Observation of Inclusive D*± Production in the Decay of Υ(1S) at BaBar

Bryan Fulsom SLAC National Accelerator Laboratory Quarkonium Working Group Workshop 2010 Fermilab, Batavia, IL May 19, 2010

Talk Outline

- Background
 - Previous Theory and Experiment
- Analysis
 - Reconstruction and Selection
 - Background Subtraction
 - Fit Method
- Conclusions
 - Results
 - Systematic uncertainties and cross-checks
 - Interpretation

Introduction

- Only ~10% of $\Upsilon(1S)$ decays have been measured
- Dominant decay mode: $\Upsilon(1S) \rightarrow ggg$
- $\Upsilon(1S) \rightarrow D^{*\pm} + X$ expected to proceed via:

- Virtual photon annihilation with hadronization
- Higher-order contributions from color singlet and octet

Introduction

- χ_{bJ} decay: color octet ~9% of color singlet [CLEO, PRD 78, 092007 (2008)]
- $\Upsilon(1S)$ decays to open charm not yet observed
 - $-BF(\Upsilon(1S) \rightarrow D^{*\pm} + X) < 1.9\%$ ARGUS, Z Phys C55, 25 (1992)

The BaBar Experiment

Analysis Strategy

• Reconstructed decay chain:

$$\begin{split} \Upsilon(2S) \to \Upsilon(1S) \pi^{+}\pi^{-} \\ & \hookrightarrow \Upsilon(1S) \to D^{*\pm} + X \\ & & \hookrightarrow D^{0}\pi^{\pm} \\ & & & \downarrow D^{0} \to K^{\overline{+}}\pi^{\pm} \end{split}$$

• Identify $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ events by recoil mass:

$$M_{\rm recoil} \equiv \sqrt{(P_{e^+e^-} - P_{\pi\pi})^2}$$

- Subtract $\pi^+\pi^-$ sideband and wrong-sign decay backgrounds
- Fit yield from m_{D^0} distribution in bins of scaled momentum:

$$\mathbf{x_p} = \frac{p_{D^{*\pm}}}{p_{\max}}$$
 $p_{\max} = \sqrt{(m_{\Upsilon(1S)}/2)^2 - m_{D^{*\pm}}^2}$

Selection Criteria

Combinatoric Background

- Define "wrong sign" sample $(D^{*\pm} \rightarrow D^0 \pi^-, D^0 \rightarrow K^- \pi^+)$
 - Fake soft pions in D* or D⁰ candidate (dominant)
 - Doubly Cabibbo suppressed ($D^{*-}\rightarrow \overline{D}^0\pi^-$, $\overline{D}^0\rightarrow K^-\pi^+$) (0.4%)
 - K and π double-misidentification (<0.02%)

Dipion Sideband Subtraction

- Subtract m_{D0} distribution from M_{recoil} sidebands – Real D* / Non – $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ backgrounds
- Scale m_{D0} distribution to signal region and subtract
 Ratio: linear (sideband) / double-Gaussian (signal)

Signal Extraction

- Signal yield from fit to m_{D^0} in slices of $x_p = [0.1, 1.0]$
- PDF parameterization:

 $P(m) = n_{\text{sig}} \times P_{\text{sig}}(m) + n_{\text{bkg}} \times P_{\text{bkg}}(m)$ $P_{\text{sig}}(m; f, \mu, \sigma_1, \sigma_2) = fG(m; \mu, \sigma_1)$ $+ (1 - f)G(m; \mu, \sigma_2)$ $P_{\text{bkg}}(m; \mu, p_1) = 1/w + p_1(m - \mu)$

- f, $\sigma_1,\,\sigma_2$ determined from MC
- $-\mu$ from full x_p range data
- Parameterization stability verified on MC across x_p

Efficiency

Determined from fits to MC in slices of x_p

• $x_p < 0.1$ dominated by combinatorial background

Results

 Apply this normalization to fragmentation function CLEO, PRD 70, 112001 (2004)

Cross-Checks

Off-resonance fit consistent with 0 events

Alternate fit to M_{recoil} returns consistent results

Systematic Uncertainties

		• π reconstruction
Sources of systematic uncertainty		
Slow π^{\pm} reconstruction	3.0%	$- D^* \rightarrow D^0 \pi$: p_{π} related to θ^*
$M_{\rm recoil}$ selection	2.8%	$-\Delta\epsilon$ between data / MC
$\mathcal{B}_{ ext{decay}}$	2.3%	• M
Generated $x_{\rm p}$ distribution	2.2%	recoil
PID	1.6%	 Peak differs in MC and data
Tracking efficiency	1.6%	 Fit with double-Gaussian
$\Upsilon(2S)$ decay model	1.2%	
γ counting	0.9%	– Compare $\Delta \epsilon$
Background curvature	0.4%	• B _{decay} PDG, PLB667, 1 (2008)
MC efficiency	0.4%	$P(\gamma(2S)) \rightarrow -+\gamma(1S))$
Signal shape	0.3%	$- D(1(23) \rightarrow \pi^{+}\pi^{-}1(13))$
$k_{\rm DCS}$	0.02%	 x_p distribution
Total	5.9%	 Fit empirically
		 Reweight and refit MC

Discussion and Conclusion

- $B(\Upsilon(1S) \rightarrow D^{*\pm} + X)$ = (2.52 ± 0.13 ± 0.15)%
- x_p>0.75: consistent with QED
- x_p<0.75: significant excess
- $P(\chi^2) = 1.6 \times 10^{-5}$
- Exceeds QED by (1.00±0.28)%
- Consistent with color singlet
 prediction (1.20 ± 0.29)% Kang et al., PRD 76, 114018 (2007)
- Disfavors large color octet contribution
- For full details, please see our publication:

BABAR, PRD 81, 011102(R) (2010)

