— Iavi A Nora Brambilla (TU Munich) net

QQQ Potential at N^2LO

— lavi A Nora Brambilla (TU Munich) net

based on
N. Brambilla, J. Ghiglieri, A. Vairo

The Three-quark static potential in perturbation theory Phys.Rev.D81:054031,2010. e-Print: arXiv:0911.3541 [hep-ph]

We know pretty well the QQbar potential...

We know pretty well the QQbar potential...

What is known about the QQQ potential and why it is interesting?

We know pretty well the QQbar potential...

> What is known about the QQQ potential and why it is interesting?

We have a richer color and dynamical structure

We know pretty well the QQbar potential...

What is known about the QQQ potential and why it is interesting?

We have a richer color and dynamical structure

- Color degrees of freedom
$3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10$

We know pretty well the QQbar potential...

What is known about the QQQ potential and why it is interesting?

We have a richer color and dynamical ${ }_{j}$ structure

- Color degrees of freedom
$3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10$
- Two independent relative distances

We know pretty well the QQbar potential...

What is known about the QQQ potential and why it is interesting?

We have a richer color and dynamical ${ }_{j}$ structure

- Color degrees of freedom
$3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10$
- Two independent relative distances

in perturbation theory the tree level has been known in all color channels, e.g. for the singlet

$$
V_{s}(\mathfrak{r})=-\frac{2}{3} \alpha_{s}\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right)
$$

The QQQ potential is calculated on the lattice in the singlet channel with a particular interest in the large distance

Takahashi Suganuma PRD70 (2002)

$$
a=0.1 \mathrm{fm}
$$

The QQQ potential is calculated on the lattice in the singlet channel with a particular interest in the large distance

Takahashi Suganuma PRD70 (2002)

$$
a=0.1 \mathrm{fm}
$$

area law: 3 flux tubes joining in one point-> three body forces

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

hep-lat/0209062
equilateral geometry,
d_qq =qq distance

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

hep-lat/0209062
equilateral geometry, d_qq = qq distance

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

hep-lat/0209062 equilateral geometry, d_qq = qq distance

It is interesting to study the perturbative part of the $Q Q Q$ potential to see up to which point perturbation theory is applicable in this case and how is the transition to three body regime

It is interesting to study the perturbative part of the $Q Q Q$ potential to see up to which point perturbation theory is applicable in this case and how is the transition to three body regime
--> we need to calculate higher order perturbative corrections

It is interesting to study the perturbative part of the $Q Q Q$ potential to see up to which point perturbation theory is applicable in this case and how is the transition to three body regime
--> we need to calculate higher order perturbative corrections
this is important also for phenomenological applications to the calculations of the triple heavy baryons mass

It is interesting to study the perturbative part of the $Q Q Q$ potential to see up to which point perturbation theory is applicable in this case and how is the transition to three body regime

--> we need to calculate higher order perturbative corrections

this is important also for phenomenological applications to the calculations of the triple heavy baryons mass

	Bjorken [4]	This work	Vijande et al [24]
$\Omega_{b c c}$	8.200 ± 0.090	7.98 ± 0.07	-
$\Omega_{c c c}$	4.925 ± 0.090	4.76 ± 0.06	4.632
$\Omega_{b b b}$	14.760 ± 0.180	14.37 ± 0.08	-
$\Omega_{b b c}$	11.480 ± 0.120	11.19 ± 0.08	-

Yu Jia, hep-ph/0607290 with tree level perturbative potential

The $Q Q Q$ richer color structure can become particularly interesting at finite temperature

The $Q Q Q$ richer color structure can become particularly interesting at finite temperature

Hübner Kaczmarek Karsch Vogt PRD77 (2008)

The Calculation of the $Q Q Q$ at $\mathrm{N} \wedge 2 L O$

The Calculation of the $Q Q Q$ at $N \wedge 2 L O$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$

The Calculation of the $Q Q Q$ at $N \wedge 2 L O$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q

The Calculation of the $Q Q Q$ at $\mathrm{N}^{\wedge} 2 \mathrm{LO}$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for $Q Q Q$ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{S 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

The Calculation of the $Q Q Q$ at $\mathrm{N} \wedge 2 L O$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for $Q Q Q$ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{S 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

The Calculation of the $Q Q Q$ at $N \wedge 2 L O$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for $Q Q Q$ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{S 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}}= & \int d^{3} \mathbf{r} d^{3} \mathbf{r}^{\prime}\left\{S^{\dagger}\left[i \partial_{0}-V_{S}^{(0)}\right] S+O^{\dagger}\left[i D_{0}-V_{O}^{(0)}\right] O\right. \\
& \left.+\Delta^{\dagger}\left[i D_{0}-V_{\Delta}^{(0)}\right] \Delta+\mathcal{O}\left(\frac{1}{m}, r, r^{\prime}\right)\right\}+\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {l.q. }}
\end{aligned}
$$

The Calculation of the $Q Q Q$ at $\mathrm{N}^{\wedge} 2 \mathrm{LO}$

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for $Q Q Q$ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{S 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}}= & \int d^{3} \mathbf{r} d^{3} \mathbf{r}^{\prime}\left\{S^{\dagger}\left[i \partial_{0} \not V_{S}^{(0)}\right] S+O^{\dagger}\left[i D_{0}-\left(V_{O}^{(0)}\right) \mathrm{O}\right.\right. \\
& +\Delta^{\dagger}\left[i D_{0}-\left(V_{\Delta}^{(0)}\right) \Delta+\mathcal{O}\left(\frac{1}{m}, r, r^{\prime}\right)\right\}+\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {l.q. }}
\end{aligned}
$$

$V_{S} V^{A}$ Wilson coefficients to be calculated in the matching

Matching the $Q Q Q$ potential

Matching the QQQ potential

UP TO TWO

LOOPS:
$\mathfrak{r}=\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} \lim _{T_{W} \rightarrow \infty} \overline{T_{W}} \ln \frac{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}}{}$,

Matching the QQQ potential

UP TO TWO

LOOPS:

$$
\begin{gathered}
\text { LOOPS: } \quad V_{\mathcal{C}}(\mathfrak{r})=\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}} \ln \frac{\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle}{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}}, ~
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle \\
\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}
\end{array}=1+\mathcal{M}^{(0)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(1)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(2)}(\mathcal{C}, \mathfrak{r})+\ldots, \\
\quad(n)->g^{2 n+2} \text { or } \alpha_{s}^{n+1} \\
V_{\mathcal{C}}(\mathfrak{r})=V_{\mathcal{C}}^{(0)}(\mathfrak{r})+V_{\mathcal{C}}^{(1)}(\mathfrak{r})+V_{\mathcal{C}}^{(2)}(\mathfrak{r})+\ldots,
\end{array}
\end{aligned}
$$

Matching the $Q Q Q$ potential

UP TO TWO

LOOPS:

$$
\mathfrak{r}=\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}
$$

$$
V_{\mathcal{C}}(\mathfrak{r})=\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}} \ln \frac{\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v^{\dagger}}|0\rangle}{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}},
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle \\
\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}
\end{array}=1+\mathcal{M}^{(0)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(1)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(2)}(\mathcal{C}, \mathfrak{r})+\ldots, \\
\quad(n)->g^{2 n+2} \text { or } \alpha_{s}^{n+1} \\
V_{\mathcal{C}}(\mathfrak{r})=V_{\mathcal{C}}^{(0)}(\mathfrak{r})+V_{\mathcal{C}}^{(1)}(\mathfrak{r})+V_{\mathcal{C}}^{(2)}(\mathfrak{r})+\ldots,
\end{array}
\end{aligned}
$$

the potential is reconstructed throught the "potential exponentiation"

$$
\begin{aligned}
V_{\mathcal{C}}^{(0)}(\mathfrak{r}) & =\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}} \mathcal{M}^{(0)}(\mathcal{C}, \mathfrak{r}) \\
V_{\mathcal{C}}^{(1)}(\mathfrak{r}) & =\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}}\left(\mathcal{M}^{(1)}(\mathcal{C}, \mathfrak{r})-\frac{1}{2} \mathcal{M}^{(0) 2}(\mathcal{C}, \mathfrak{r})\right) \\
V_{\mathcal{C}}^{(2)}(\mathfrak{r}) & =\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}}\left(\mathcal{M}^{(2)}(\mathcal{C}, \mathfrak{r})-\mathcal{M}^{(0)}(\mathcal{C}, \mathfrak{r}) \mathcal{M}^{(1)}(\mathcal{C}, \mathfrak{r})+\frac{1}{3} \mathcal{M}^{(0) 3}(\mathcal{C}, \mathfrak{r})\right)
\end{aligned}
$$

UP TO TWO

Matching the $Q Q Q$ potential

LOOPS:

$\mathfrak{r}=\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$
$V_{\mathcal{C}}(\mathfrak{r})=\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}} \ln \frac{\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle}{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}}$,

$$
\begin{aligned}
& \begin{array}{l}
\frac{\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle}{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}}=1+\mathcal{M}^{(0)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(1)}(\mathcal{C}, \mathfrak{r})+\mathcal{M}^{(2)}(\mathcal{C}, \mathfrak{r})+\ldots, \\
\\
\quad(n)->g^{2 n+2} \text { or } \alpha_{s}^{n+1} \\
V_{\mathcal{C}}(\mathfrak{r})=V_{\mathcal{C}}^{(0)}(\mathfrak{r})+V_{\mathcal{C}}^{(1)}(\mathfrak{r})+V_{\mathcal{C}}^{(2)}(\mathfrak{r})+\ldots,
\end{array}
\end{aligned}
$$

the potential is a sum of two-and three-body contributions

$$
V(\mathfrak{r})=\sum_{q=1}^{3} V_{2}\left(\mathbf{r}_{q}\right)+V_{3}(\mathfrak{r})
$$

QQQ potential at LO

QQQ potential at LO

QQQ potential at LO

$$
V_{\mathcal{C}}^{0}(\mathfrak{r})=\sum_{q=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{s}}{\left|\mathbf{r}_{q}\right|}
$$

QQQ potential at LO

$$
V_{\mathcal{C}}^{0}(\mathfrak{r})=\sum_{q=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{s}}{\left|\mathbf{r}_{q}\right|}
$$

QQQ potential at LO

$$
\begin{aligned}
V_{\mathcal{C}}^{0}(\mathfrak{r}) & =\sum_{q=1}^{3} f_{q}^{0}(\mathcal{C})\left|\frac{\alpha_{s}}{\left|\mathbf{r}_{q}\right|}\right|
\end{aligned}
$$

Singlet and decuplet potential at LO

- The computation of the color factors yields

$$
V_{s}(\mathfrak{r})=-\frac{2}{3} \alpha_{s}\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right) \quad V_{d}(\mathfrak{r})=\frac{1}{3} \alpha_{s}\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right)
$$

Singlet and decuplet potential at LO

- The computation of the color factors yields

$$
\begin{aligned}
& V_{s}(\mathfrak{r})=-\frac{2}{3} \alpha_{s}\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right) \quad V_{d}(\mathfrak{r})=\frac{1}{3} \alpha_{s}\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right) \\
& \qquad \begin{array}{c}
\text { Antitriplet diaquark (QQ) } \\
\text { colorfactor } \\
\text { (antisymmetric) }
\end{array} \\
& \hline
\end{aligned}
$$

Singlet and decuplet potential at LO

- The computation of the color factors yields

Singlet and decuplet potential at LO

- The computation of the color factors yields

Singlet and decuplet potential at LO

- The computation of the color factors yields

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

${ }_{k}$

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

$$
f_{q}^{0}(O)=\left(\begin{array}{ll}
f_{A A} & f_{A S} \\
f_{S A} & f_{S S}
\end{array}\right)
$$

j
${ }_{k}$

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

$$
f_{q}^{0}(O)=\left(\begin{array}{ll}
f_{A A} & f_{A S} \\
f_{S A} & f_{S S}
\end{array}\right)
$$

$$
\begin{gathered}
V_{O}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\alpha_{s}\left[\frac{1}{\left|\mathbf{r}_{1}\right|}\left(\begin{array}{cc}
-\frac{2}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right)+\frac{1}{\left|\mathbf{r}_{2}\right|}\left(\begin{array}{cc}
\frac{1}{12} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & -\frac{5}{12}
\end{array}\right)+\frac{1}{\left|\mathbf{r}_{3}\right|}\left(\begin{array}{cc}
\frac{1}{1 \sqrt{3}} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & -\frac{5}{12}
\end{array}\right)\right] \\
\end{gathered}
$$

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

$$
\begin{gathered}
f_{q}^{0}(O)=\left(\begin{array}{cc}
f_{A A} & f_{A S} \\
f_{S A} & f_{S S}
\end{array}\right) \\
V_{O}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\alpha_{s}\left[\frac{1}{\left|\mathbf{r}_{1}\right|}\left(\begin{array}{cc}
-\frac{2}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right)+\frac{1}{\left|\mathbf{r}_{2}\right|}\left(\begin{array}{c}
\frac{1}{12} \\
\left.j-\frac{\sqrt{3}}{4} \right\rvert\, \\
\hline \left.-\frac{\sqrt{3}}{4} \right\rvert\, \\
\hline 12
\end{array}\right)+\frac{1}{\left|\mathbf{r}_{3}\right|}\left(\left.\frac{\frac{1}{12}}{\left|\frac{\sqrt{3}}{4}\right|} \right\rvert\,\right.\right.
\end{gathered}
$$

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

$$
\begin{aligned}
& f_{q}^{0}(O)=\left(\begin{array}{cc}
f_{A A} & f_{A S} \\
f_{S A} & f_{S S}
\end{array}\right) \\
& V_{O}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\alpha_{s}\left[\begin{array}{ll}
+\frac{1}{\left|\mathbf{r}_{2}\right|}\left(\begin{array}{cc}
\frac{1}{12} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & -\frac{5}{12}
\end{array}\right) \\
j & \underbrace{}_{2}
\end{array}\right.
\end{aligned}
$$

The octets at LO

- The simple one-gluon-exchange is enough to mix the two representations, i.e. nonzero color amplitude from O^{A} to O^{S}
- Potential has then to be defined as a matrix

$$
V_{O}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\alpha_{s}\left[\begin{array}{c}
f_{q}^{0}(O)
\end{array}=\left(\begin{array}{cc}
f_{A A} & f_{A S} \\
f_{S A} & f_{S S}
\end{array}\right), \begin{array}{r}
+\frac{1}{\left|\mathbf{r}_{2}\right|}\left(\begin{array}{cc}
-\frac{2}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right) \\
j \underbrace{+}_{\mathbf{r}_{2}} i
\end{array}\right.
$$

QQQ potential at NLO in Coulomb gauge

QQQ potential at NLO in Coulomb gauge

QQQ potential at NLO in Coulomb gauge

- Esponentiation

QQQ potential at NLO in Coulomb gauge

- Esponentiation

$$
V_{\mathcal{C}}=\lim _{T_{W} \rightarrow \infty}-\frac{1}{i T_{W}} \log \frac{\left\langle\mathcal{C}^{u} W \mathcal{C}^{v *}\right\rangle}{\left\langle S_{\mathcal{C}}^{u v}\right\rangle} \quad e^{-i T_{W} V_{\mathcal{C}}}=1-i T_{W} V_{\mathcal{C}}-\frac{T_{W}^{2}}{2!} V_{\mathcal{C}}^{2}+\ldots
$$

QQQ potential at NLO in Coulomb gauge

- Esponentiation

$$
V_{\mathcal{C}}=\lim _{T_{W} \rightarrow \infty}-\frac{1}{i T_{W}} \log \frac{\left\langle\mathcal{C}^{u} W \mathcal{C}^{v *}\right\rangle}{\left\langle S_{\mathcal{C}}^{u v}\right\rangle} \quad e^{-i T_{W} V_{\mathcal{C}}}=1-i T_{W} V_{\mathcal{C}}-\frac{T_{W}^{2}}{2!} V_{\mathcal{C}}^{2}+\ldots
$$

QQQ potential at NLO in Coulomb gauge

- Esponentiation

$$
V_{\mathcal{C}}=\lim _{T_{W} \rightarrow \infty}-\frac{1}{i T_{W}} \log \frac{\left\langle\mathcal{C}^{u} W \mathcal{C}^{v *}\right\rangle}{\left\langle S_{\mathcal{C}}^{u v}\right\rangle} \quad e^{-i T_{W} V_{\mathcal{C}}}=1-i T_{W} V_{\mathcal{C}}-\frac{T_{W}^{2}}{2!} V_{\mathcal{C}}^{2}+\ldots
$$

QQQ potential at NLO in Coulomb gauge

- Esponentiation

$$
V_{\mathcal{C}}=\lim _{T_{W} \rightarrow \infty}-\frac{1}{i T_{W}} \log \frac{\left\langle\mathcal{C}^{u} W \mathcal{C}^{v *}\right\rangle}{\left\langle S_{\mathcal{C}}^{u v}\right\rangle} \quad e^{-i T_{W} V_{\mathcal{C}}}=1-i T_{W} V_{\mathcal{C}}-\frac{T_{W}^{2}}{2!} V_{\mathcal{C}}^{2}+\ldots
$$

- The potential is still two body

QQQ potential at NLO

QQQ potential at NLO

$$
V_{\mathcal{C}}^{1}(\mathfrak{r})=\sum_{i=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{\left|\mathbf{r}_{q}\right|}\left[1+\frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{4 \pi}\left(2 \beta_{0} \gamma+a_{1}\right)\right]
$$

QQQ potential at NLO

$$
\begin{array}{r}
V_{\mathcal{C}}^{1}(\mathfrak{r})=\sum_{i=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha \overline{M S}\left(\mathbf{r}_{q}\right)}{\left|\mathbf{r}_{q}\right|}\left[1+\frac{\alpha \overline{M S}\left(\mathbf{r}_{q}\right)}{4 \pi}\left(2 \beta_{0} \gamma+a_{1}\right)\right] \\
a_{1}=\frac{31}{9} C_{A}-\frac{20}{9} T_{F} n_{f}
\end{array}
$$

QQQ potential at NLO

$$
\begin{aligned}
& V_{\mathcal{C}}^{1}(\mathfrak{r})=\sum_{i=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{\left|\mathbf{r}_{q}\right|}\left[1+\frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{4 \pi}\left(2 \beta_{0} \gamma+a_{1}\right)\right] \\
& \text { same colour factor as the } \\
& a_{1}=\frac{31}{9} C_{A}-\frac{20}{9} T_{F} n_{f}
\end{aligned}
$$

LO one

QQQ potential at NLO

$$
\begin{aligned}
& V_{\mathcal{C}}^{1}(\mathfrak{r})=\sum_{i=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{\left|\mathbf{r}_{q}\right|}\left[1+\frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{4 \pi}\left(2 \beta_{0} \gamma+a_{1}\right)\right] \\
& \text { same colour factor as the } \quad a_{1}=\frac{31}{9} C_{A}-\frac{20}{9} T_{F} n_{f} \\
& \text { LO one }
\end{aligned}
$$

at NLO QQbar and QQQ potential only differ for the overall colour representation but the effective coupling of the potential is the same

$$
\alpha_{V}\left(1 /\left|\mathbf{r}_{q}\right|\right)=\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)\left[1+\frac{\alpha_{\mathrm{s}}}{4 \pi}\left(2 \beta_{0} \gamma_{E}+a_{1}\right)\right],
$$

At which order a genuine three body interaction (not generated by two body exponentiation like arises?

At which order a genuine three body interaction (not generated by two body exponentiation like arises?
at order α_{s}^{3} (NNLO)

At which order a genuine three body interaction (not
generated by two body exponentiation like arises? at order α_{s}^{3} (NNLO)

WE WRITE

$$
V_{\mathcal{C}}^{(2)}(\mathfrak{r})=V_{\mathcal{C}}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} \sum_{q=1}^{3} \frac{a_{q}^{2 \text { body }}(\mathcal{C})}{\left|\mathbf{r}_{q}\right|}
$$

At which order a genuine three body interaction (not

 generated by two body exponentiation like arises?
at order α_{s}^{3} (NNLO)

WE WRITE

$$
V_{\mathcal{C}}^{(2)}(\mathfrak{r})=V_{\mathcal{C}}^{3 \mathrm{body}}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} \sum_{q=1}^{3} \frac{a_{q}^{2 \mathrm{body}}(\mathcal{C})}{\left|\mathbf{r}_{q}\right|}
$$

$V_{\mathcal{C}}^{3 \text { body }}$, is defined as the part of $V_{\mathcal{C}}^{(2)}$ that vanishes when

$$
\left|\mathbf{r}_{j}\right| \rightarrow \infty(i \neq j) \text { with fixed }\left|\mathbf{r}_{k}\right|(k \neq i \text { and } k \neq j)
$$

At which order a genuine three body interaction (not

generated by two body exponentiation like arises?

at order α_{s}^{3} (NNLO)

WE WRITE

$$
V_{\mathcal{C}}^{(2)}(\mathfrak{r})=V_{\mathcal{C}}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} \sum_{q=1}^{3} \frac{a_{q}^{2 \text { body }}(\mathcal{C})}{\left|\mathbf{r}_{q}\right|}
$$

$V_{\mathcal{C}}^{3 \mathrm{body}}$, is defined as the part of $V_{\mathcal{C}}^{(2)}$ that vanishes when

$$
\left|\mathbf{r}_{j}\right| \rightarrow \infty(i \neq j) \text { with fixed }\left|\mathbf{r}_{k}\right|(k \neq i \text { and } k \neq j)
$$

$V_{\mathcal{C}}^{(2)}$ is gauge invariant $a_{2}^{2 \text { body }}(\mathcal{C})$ and $V_{\mathcal{C}}^{3 \text { body }}$ are gauge invariant

At which order a genuine three body interaction (not

generated by two body exponentiation like arises?

$$
\text { at order } \alpha_{s}^{3}(\text { NNLO })
$$

WE WRITE

$$
V_{\mathcal{C}}^{(2)}(\mathfrak{r})=V_{\mathcal{C}}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} \sum_{q=1}^{3} \frac{a_{q}^{2 \text { body }}(\mathcal{C})}{\left|\mathbf{r}_{q}\right|}
$$

$V_{\mathcal{C}}^{3 \text { body }}$, is defined as the part of $V_{\mathcal{C}}^{(2)}$ that vanishes when

$$
\left|\mathbf{r}_{j}\right| \rightarrow \infty(i \neq j) \text { with fixed }\left|\mathbf{r}_{k}\right|(k \neq i \text { and } k \neq j) .
$$

- V 3 3body comes from diagrams with gluons attached to all 3 quark lines
- Many classes of diagrams
- The Coulomb gauge is again very useful

"Abelian", exponentiating diagrams

$$
e^{-i T_{W} V}=1-i T_{W} V-\frac{T_{W}^{2}}{2!} V^{2}+i \frac{T_{W}^{3}}{3!} V^{3} \ldots
$$

"Abelian", exponentiating diagrams

$$
e^{-i T_{W} V}=1-i T_{W} V-\frac{T_{W}^{2}}{2!} V^{2}+i \frac{T_{W}^{3}}{3!} V^{3} \ldots
$$

- Cubes of the tree-level potential

"Abelian", exponentiating diagrams

$$
e^{-i T_{W} V}=1-i T_{W} V-\frac{T_{W}^{2}}{2!} V^{2}+i \frac{T_{W}^{3}}{3!} V^{3} \ldots
$$

- Cubes of the tree-level potential

- Square terms of the one-loop potential

"Abelian" zero diagrams

Non-abelian zero diagrams

Non-abelian zero diagrams

- What is left?

The only three body contribution at N^2LO in Coulomb gauge comes from

The only three body contribution at $\mathrm{N} \wedge 2$ LO in Coulomb gauge comes from

The only three body contribution at N^2LO in Coulomb gauge comes from

$f_{\mathcal{H}}(S)=-\frac{1}{2}$ and $f_{\mathcal{H}}(\Delta)=-\frac{1}{4}$. color factors equal for all 12 diagrams

The only three body contribution at $\mathrm{N} \wedge 2$ LO in Coulomb gauge comes from

$f_{\mathcal{H}}(S)=-\frac{1}{2}$ and $f_{\mathcal{H}}(\Delta)=-\frac{1}{4}$. color factors equal for all 12 diagrams
complicate amplitude

$$
\begin{aligned}
\mathcal{H}_{C}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right) & =-\frac{i f_{\mathcal{H}}(\mathcal{C}) g^{6}}{\mathbf{q}_{2}^{2} \mathbf{q}_{3}^{2}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{4\left(\mathbf{q}_{2} \cdot \hat{\mathbf{k}} \mathbf{q}_{3} \cdot \hat{\mathbf{k}}-\mathbf{q}_{2} \cdot \mathbf{q}_{3}\right)}{\mathbf{k}^{2}\left(\mathbf{k}-\mathbf{q}_{2}\right)^{2}\left(\mathbf{k}+\mathbf{q}_{3}\right)^{2}} \\
& =\frac{i f_{\mathcal{H}}(\mathcal{C}) g^{6}}{8 \mathbf{q}_{2}^{2} \mathbf{q}_{3}^{2}}\left[\frac{\left|\mathbf{q}_{2}+\mathbf{q}_{3}\right|}{\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|}+\frac{\mathbf{q}_{2} \cdot \mathbf{q}_{3}+\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|}{\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|\left|\mathbf{q}_{2}+\mathbf{q}_{3}\right|}-\frac{1}{\left|\mathbf{q}_{2}\right|}-\frac{1}{\left|\mathbf{q}_{3}\right|}\right] .
\end{aligned}
$$

The only three body contribution at N^2LO in Coulomb gauge comes from

$f_{\mathcal{H}}(S)=-\frac{1}{2}$ and $f_{\mathcal{H}}(\Delta)=-\frac{1}{4}$. color factors equal for all 12 diagrams
complicate amplitude

$$
\begin{aligned}
\mathcal{H}_{C}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right) & =-\frac{i f_{\mathcal{H}}(\mathcal{C}) g^{6}}{\mathbf{q}_{2}^{2} \mathbf{q}_{3}^{2}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{4\left(\mathbf{q}_{2} \cdot \hat{\mathbf{k}} \mathbf{q}_{3} \cdot \hat{\mathbf{k}}-\mathbf{q}_{2} \cdot \mathbf{q}_{3}\right)}{\mathbf{k}^{2}\left(\mathbf{k}-\mathbf{q}_{2}\right)^{2}\left(\mathbf{k}+\mathbf{q}_{3}\right)^{2}} \\
& =\frac{i f_{\mathcal{H}}(\mathcal{C}) g^{6}}{8 \mathbf{q}_{2}^{2} \mathbf{q}_{3}^{2}}\left[\frac{\left|\mathbf{q}_{2}+\mathbf{q}_{3}\right|}{\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|}+\frac{\mathbf{q}_{2} \cdot \mathbf{q}_{3}+\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|}{\left|\mathbf{q}_{2}\right|\left|\mathbf{q}_{3}\right|\left|\mathbf{q}_{2}+\mathbf{q}_{3}\right|}-\frac{1}{\left|\mathbf{q}_{2}\right|}-\frac{1}{\left|\mathbf{q}_{3}\right|}\right] .
\end{aligned}
$$

the 3body potential in configuration space can be calculated numerically

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

$$
0.6
$$

weak dependence on theta of the 3body potential

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

may indicate the onset of a smooth transition towards the long distance Y shaped three body potential seen in the lattice data?

Let us consider some simple geometries

$\theta=\pi / 3$: planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

Let us consider some simple geometries

$\theta=\pi / 3$: planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

We can compare the relative magnitude of the three-body contribution to the tree level potential. For the singlet

$$
\frac{V_{\mathcal{H} s}^{\mathrm{tot}}(r)}{V_{s}^{(0)}(r)}=\frac{c_{\mathcal{H}}(\pi / 3)}{4} \alpha_{\mathrm{s}}^{2}(1 / r) \approx \frac{\alpha_{\mathrm{s}}^{2}(1 / r)}{2.90}
$$

Let us consider some simple geometries

$\theta=\pi / 3:$ planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

We can compare the relative magnitude of the three-body contribution to the tree level potential. For the singlet

$$
\frac{V_{\mathcal{H} s}^{\mathrm{tot}}(r)}{V_{s}^{(0)}(r)}=\frac{c_{\mathcal{H}}(\pi / 3)}{4} \alpha_{\mathrm{s}}^{2}(1 / r) \approx \frac{\alpha_{\mathrm{s}}^{2}(1 / r)}{2.90}
$$

using α_{s} at one loop, $V_{\mathcal{H} s}^{\mathrm{tot}}(r)$ may become as large as one sixth of the tree-level Coulomb potential in the region around 0.3 fm , where, at least in the $Q \bar{Q}$ case, perturbation theory śtill h'ỏláš'

Let us consider some simple geometries
\qquad
.
\square

Let us consider some simple geometries
Generic geometry
In the most general geometry the three body potential depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified

Let us consider some simple geometries

In the most general geometry the three body potential depends on two coordinates, we may choose one of them to be L_min, leaving the other not specified
(B.1) Planar lattice geometry with two fixed quarks

In Fig 10, we plot the three-body potential obtained by placing the three quarks in a plane (x, y), fixing the position of the first quark in $(0,0)$, the second one in $(1,0)$ and moving the third one in the lattice $\left(0.5+0.125 n_{x}, 0.125 n_{y}\right)$ with $n_{x} \in\{0,1, \ldots, 20\}$ and $n_{y} \in\{0,1, \ldots, 24\}$. The plot clearly shows the dependence on the geometry at fixed L, however, the dependence

FIG. 10: The normalized three-body potential, $V_{\mathcal{H C}}^{\mathrm{tot}}(L, \ldots) /\left(-f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3}\right)$, plotted as function of L

In the most general geometry the three body potential depends on two coordinates, we may choose one of them to be L_min, leaving the other not specified

Three-dimensional lattice geometry with the three quarks moving along the axes
28] T. T. Takahashi and H. Suganuma, Phys. Rev. D70, 074506 (2004), hep-lat/0409105.
In the lattice calculation of Ref. [28], the three quarks were located along the axes of a three-dimensional lattice, namely at $\left(n_{x}, 0,0\right),\left(0, n_{y}, 0\right)$ and $\left(0,0, n_{z}\right)$, with $n_{x} \in\{0,1, \ldots, 6\}$ and $n_{y}, n_{z} \in\{1, \ldots, 6\}$. For the sake of comparison, we consider the same geometry and plot the corresponding three-body potential in Fig. 11. The plot shows a weak dependence on the geometry: much weaker than in the two-body case, but also somewhat weaker than in the geometry considered in (B.1).

FIG. 11: The normalized three-body potential, $V_{\mathcal{H C}}^{\mathrm{tot}}(L, \ldots) /\left(-f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3}\right)$, plotted as function of L

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 L O$

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:
consider a special
configuration

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:
consider a special configuration

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:
consider a special configuration

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 b o d y}(S)$ is independent of the geometry of the three quarks:
consider a special configuration

$$
V_{s}^{(2)}(r)=-\left(3-\frac{\pi^{2}}{4}\right) \frac{\alpha_{\mathrm{s}}^{3}}{r}+2 \alpha_{\mathrm{s}}^{3} \frac{a^{2 \mathrm{body}}(S)}{r}
$$

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:
consider a special configuration

$$
V_{s}^{(2)}(r)=-\left(3-\frac{\pi^{2}}{4}\right) \frac{\alpha_{\mathrm{s}}^{3}}{r}+2 \alpha_{\mathrm{s}}^{3} \frac{a^{2 \mathrm{body}}(S)}{r},=V_{Q}(2)(r)
$$

Full singlet (2 and 3 body) QQQ potential at $\mathrm{N} \wedge 2 \mathrm{LO}$

in the singlet case

$$
V_{s}^{(2)}(\mathfrak{r})=V_{s}^{3 \text { body }}(\mathfrak{r})+\alpha_{\mathrm{s}}^{3} a^{2 \text { body }}(S) \sum_{q=1}^{3} \frac{1}{\left|\mathbf{r}_{q}\right|}
$$

$a^{2 \mathrm{body}}(S)$ is independent of the geometry of the three quarks:
consider a special configuration

$$
V_{s}^{(2)}(r)=-\left(3-\frac{\pi^{2}}{4}\right) \frac{\alpha_{\mathrm{s}}^{3}}{r}+2 \alpha_{\mathrm{s}}^{3} \frac{a^{2 \mathrm{body}}(S)}{r}=V_{Q}^{(2)}(r)
$$

$$
a^{2 \mathrm{body}}(S)=-\frac{2}{3} \frac{1}{(4 \pi)^{2}}\left[a_{2}-36 \pi^{2}+3 \pi^{4}+\left(\frac{\pi^{2}}{3}+4 \gamma_{E}^{2}\right) \beta_{0}^{2}+\gamma_{E}\left(4 a_{1} \beta_{0}+2 \beta_{1}\right)\right]
$$

Full QQQ Potential at N^2LO two and three bodies parts

$$
\begin{aligned}
& V_{s}(\mathfrak{r})=-\frac{2}{3} \sum_{q=1}^{3} \frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{\left|\mathbf{r}_{q}\right|}\left\{1+\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
&+\left(\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\right)^{2} {\left[+66 \zeta(3)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18}\right.} \\
&-\left(\frac{52}{3} \zeta(3)+\frac{176}{3} \gamma_{E}^{2}+\frac{916}{9} \gamma_{E}+\frac{44}{9} \pi^{2}+\frac{1229}{27}\right) n_{f} \\
&\left.\left.+\left(\frac{16}{9} \gamma_{E}^{2}+\frac{80}{27} \gamma_{E}+\frac{4}{27} \pi^{2}+\frac{100}{81}\right) n_{f}^{2}\right]\right\} \\
&-\alpha_{\mathrm{s}}\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2}\left[v_{\mathcal{H}}\left(\mathbf{r}_{2}, \mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(\mathbf{r}_{1},-\mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(-\mathbf{r}_{2},-\mathbf{r}_{1}\right)\right]
\end{aligned}
$$

Full QQQ Potential at $\mathrm{N} \wedge 2 L O$ two and three bodies parts

$$
\begin{aligned}
& V_{s}(\mathfrak{r})=-\frac{2}{3} \sum_{q=1}^{3} \frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{\left|\mathbf{r}_{q}\right|}\left\{1+\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
&+\left(\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\right)^{2} {\left[+66 \zeta(3)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18}\right.} \\
&-\left(\frac{52}{3} \zeta(3)+\frac{176}{3} \gamma_{E}^{2}+\frac{916}{9} \gamma_{E}+\frac{44}{9} \pi^{2}+\frac{1229}{27}\right) n_{f} \\
&\left.\left.+\left(\frac{16}{9} \gamma_{E}^{2}+\frac{80}{27} \gamma_{E}+\frac{4}{27} \pi^{2}+\frac{100}{81}\right) n_{f}^{2}\right]\right\} \\
&-\alpha_{\mathrm{s}}\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2}\left[v_{\mathcal{H}}\left(\mathbf{r}_{2}, \mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(\mathbf{r}_{1},-\mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(-\mathbf{r}_{2},-\mathbf{r}_{1}\right)\right]
\end{aligned}
$$

Full QQQ Potential at $\mathrm{N} \wedge 2 L O$ two and three bodies parts

$$
\begin{aligned}
& V_{s}(\mathfrak{r})=-\frac{2}{3} \sum_{q=1}^{3} \frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{\left|\mathbf{r}_{q}\right|}\left\{1+\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
&+\left(\frac{\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)}{4 \pi}\right)^{2} {\left[+66 \zeta(3)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18}\right.} \\
&-\left(\frac{52}{3} \zeta(3)+\frac{176}{3} \gamma_{E}^{2}+\frac{916}{9} \gamma_{E}+\frac{44}{9} \pi^{2}+\frac{1229}{27}\right) n_{f} \\
&\left.\left.+\left(\frac{16}{9} \gamma_{E}^{2}+\frac{80}{27} \gamma_{E}+\frac{4}{27} \pi^{2}+\frac{100}{81}\right) n_{f}^{2}\right]\right\} \\
&-\alpha_{\mathrm{s}}\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2}\left[v_{\mathcal{H}}\left(\mathbf{r}_{2}, \mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(\mathbf{r}_{1},-\mathbf{r}_{3}\right)+v_{\mathcal{H}}\left(-\mathbf{r}_{2},-\mathbf{r}_{1}\right)\right]
\end{aligned}
$$

where $v_{\mathcal{H}}\left(\mathbf{r}_{2}, \mathbf{r}_{3}\right)=16 \pi \hat{\mathbf{r}_{2}} \cdot \hat{\mathbf{r}_{3}} \int_{0}^{1} d x \int_{0}^{1} d y \frac{1}{R}\left[\left(1-\frac{M^{2}}{R^{2}}\right) \arctan \frac{R}{M}+\frac{M}{R}\right]+16 \pi \hat{\mathbf{r}}_{2}^{i} \hat{\mathbf{r}}_{3}{ }^{j}$ $\times \int_{0}^{1} d x \int_{0}^{1} d y \frac{\hat{\mathbf{R}}^{i} \hat{\mathbf{R}}^{j}}{R}\left[\left(1+3 \frac{M^{2}}{R^{2}}\right) \arctan \frac{R}{M}-3 \frac{M}{R}\right]$, with $\mathbf{R}=x \mathbf{r}_{2}-y \mathbf{r}_{3}, R=|\mathbf{R}|$ and $M=\left|\mathbf{r}_{2}\right| \sqrt{x(1-x)}+\left|\mathbf{r}_{3}\right| \sqrt{y(1-y)}$.

Full QQ antitriplet potential at $\mathrm{N} \wedge 2 L O$

$$
\begin{aligned}
& V_{T}(r)=-\frac{2}{3} \frac{\alpha_{\mathrm{s}}(1 / r)}{r}\left\{1+\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
&+\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{2}[+66 \zeta(3)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18} \\
&-\left(\frac{52}{3} \zeta(3)+\frac{176}{3} \gamma_{E}^{2}+\frac{916}{9} \gamma_{E}+\frac{44}{9} \pi^{2}+\frac{1229}{27}\right) n_{f} \\
&\left.\left.+\left(\frac{16}{9} \gamma_{E}^{2}+\frac{80}{27} \gamma_{E}+\frac{4}{27} \pi^{2}+\frac{100}{81}\right) n_{f}^{2}\right]\right\}
\end{aligned}
$$

OBTAINED BY SENDING A QUARK TO INFINITY

Conclusions

Conclusions

The complete NNLO QQQ singlet and $Q Q$ antitriplet static potential has been calculated

Conclusions

The complete NNLO $Q Q Q$ singlet and $Q Q$ antitriplet static potential has been calculated

The first contribution of the three body type has been identified in perturbation theory at NNLO and its impact has been studied

Conclusions

The complete NNLO $Q Q Q$ singlet and $Q Q$ antitriplet static potential has been calculated

The first contribution of the three body type has been identified in perturbation theory at NNLO and its impact has been studied

These results are relevant for the study of the transition region from the perturbative to the nonperturbative regime where the QQQ geometry is adding a new element with respect to the QQbar case, for phenomenological applications at zero and finite temperature

Conclusions

The complete NNLO $Q Q Q$ singlet and $Q Q$ antitriplet static potential has been calculated

The first contribution of the three body type has been identified in perturbation theory at NNLO and its impact has been studied

These results are relevant for the study of the transition region from the perturbative to the nonperturbative regime where the QQQ geometry is adding a new element with respect to the QQbar case, for phenomenological applications at zero and finite temperature

These results open the way to the study of renormalization group and ultrasoft corrections for the $Q Q Q$ static energy (as it has been done for the qqbar case) and to the study of the gluelumps for QQQ

