Jian-Xiong Wang Institute of High Energy, Chinese Academy of Science, Beijing

QWG 2010, Fermilab, May 21, 2010

1 Introduction

2 J/ψ production at the B-factories, In collaboration with Bing Gong
3 c → J/ψ fragmentation function, In collaboration with Bing Gong
4 J/ψ production in Z decay, In collaboration with Rong Li
5 J/ψ production from Υ Decay, In collaboration with Zhi-Guo He
6 Summary

Introduction

- Perturbative and non-perturbative QCD, hadronization, factorization
- Color-singlet and Color-octet mechanism was proposed based on NRQCD since c-quark is heavy.
- Clear signal to detect J/ψ .
- heavy quarkonium production is a good place to testify these theoretical framework.
- But there are still many difficulties.
 - J/ψ photoproduction at HERA
 - $\blacksquare~J/\psi$ production at the B factories
 - J/ψ polarization at the Tevatron
- NLO corrections are important.
 - Data on inelastic J/\u03c6 photoproduction are adequately described by the color singlet channel alone at NLO
 - Double charmonium production at the B factories

Introduction

$$e^+e^-
ightarrow J/\psi + \eta_c$$

Experimantal Data

BELLE:
$$\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (25.6 \pm 2.8 \pm 3.4) \text{ fb}$$

BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1}) \text{ fb}$
[Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LO NRQCD Predictions

 $2.3\sim 5.5~{\rm fb}$ [Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]

$$e^+e^-
ightarrow J/\psi + \eta_c$$

Experimantal Data

BELLE:
$$\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (25.6 \pm 2.8 \pm 3.4) \text{ fb}$$

BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1}) \text{ fb}$
[Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]

LO NRQCD Predictions

 $2.3\sim5.5~{\rm fb}$ [Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]

NLO QCD corrections

 $K\equiv\sigma^{NLO}/\sigma^{LO}\sim 2$ [Zhang et al.(2006), Gong and Wang(2007)]

Our calculation Confirmed the result given by [Zhang et al.(2006)] analytically.

$$e^+e^- \rightarrow J/\psi + J/\psi$$

Problem

LO NRQCD prediction indicates that the cross section of this process is large than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories. [Bodwin et al.(2003a), Abe et al.(2004)]

$$e^+e^- \rightarrow J/\psi + J/\psi$$

Problem

LO NRQCD prediction indicates that the cross section of this process is large than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories. [Bodwin et al.(2003a), Abe et al.(2004)]

NLO QCD corrections

 \blacksquare Greatly decreased, with a K factor ranging from $-0.31 \sim 0.25$ depending on the renormalization scale.

Might explain the situation.

[Gong and Wang(2008b)]

Introduction

LO NRQCD Predictions:

$$e^+e^-
ightarrow J/\psi + car{c}$$

 $e^+e^-
ightarrow J/\psi + gg$
 $e^+e^-
ightarrow J/\psi^{(8)}(^3P_J, {}^1S_0) + g$

 $\begin{array}{l} 0.07\sim 0.20 \text{pb}\\ 0.15\sim 0.3 \text{pb}\\ 0.3\sim 0.8 \text{pb} \end{array}$

Experimental Data:

$$\begin{array}{ll} \textit{BARAR} & \sigma[e^+e^- \to J/\psi + X] = (2.54 \pm 0.21 \pm 0.21) ~\rm{pb} \\ & \text{CLEO} & \sigma[e^+e^- \to J/\psi + X] = (1.9 \pm 0.20) ~\rm{pb} \\ & \text{BELLE} & \sigma[e^+e^- \to J/\psi + X] = (1.45 \pm 0.10 \pm 0.13) ~\rm{pb} \\ & \sigma[e^+e^- \to J/\psi + c\bar{c} + X] = (0.87^{+0.21}_{-0.19} \pm 0.17) ~\rm{pb} \end{array}$$

[Aubert et al.(2001), Aubert et al.(2005), Briere et al.(2004), Abe et al.(2002a), Abe et al.(2002)]

Introduction

New BELLE Data

$$\begin{array}{lll} \sigma[e^+e^- \to J/\psi + X] &=& (1.17 \pm 0.02 \pm 0.07) \ \mathrm{pb} \\ \sigma[e^+e^- \to J/\psi + c\bar{c}] &=& (0.74 \pm 0.08^{+0.09}_{-0.08}) \ \mathrm{pb} \\ \sigma[e^+e^- \to J/\psi + X_{\mathrm{non}-c\bar{c}}] &=& (0.43 \pm 0.09 \pm 0.09) \ \mathrm{pb} \end{array}$$

[Pakhlov et al.(2009)]

Inclusive Quarkonium Production at the B factories $\Box J/\psi$ production at the B-factories, In collaboration with Bing Gong

$e^+e^- ightarrow J/\psi + gg$ with Typical Feynman Diagrams shown

$m_c(\text{GeV})$	$\alpha_{s}(\mu)$	$\sigma^{(0)}(pb)$	$a(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)} / \sigma^{(0)}$
1.4	0.267	0.341	2.35	0.409	1.20
1.5	0.259	0.308	2.57	0.373	1.21
1.6	0.252	0.279	2.89	0.344	1.23

Cross sections with different charm quark mass m_c where the renormalization scale $\mu=2m_c$ and $\sqrt{s}=10.6~{\rm GeV}.$

Consistent with the calculation by [Ma et al.(2009)].

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

 $L_{J/\psi}$ production at the B-factories, In collaboration with Bing Gong

Polarization parameter α and angular distribution parameter A of J/ψ as functions of p with $m_c = 1.5$ GeV and $\mu = 2m_c$.

$$\frac{d^2\sigma}{d\cos\theta dp} = S(p)[1 + A(p)\cos\theta]$$
$$\alpha = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L}$$

Results on the left contain potentially large numerical errors in our calculation for p < 0.5 GeV or p > 4.2 GeV due to the cancellation of large numbers.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

1.6

0.252

 $\Box_{J/\psi}$ production at the B-factories, In collaboration with Bing Gong

Typical Feynman Didgrams at NLO for $e^+e^- \rightarrow J/\psi + c\bar{c}$

$\sigma^{(1)} = \sigma^{(0)} \left\{ 1 + \frac{\alpha_s(\mu)}{\pi} \left[a(\hat{s}) + \beta_0 \ln\left(\frac{\mu}{2m_c}\right) \right] \right\}$						
$n_c(\text{GeV})$	$\alpha_{s}(\mu)$	$\sigma^{(0)}(pb)$	$a(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)}/\sigma^{(0)}$	
1.4	0.267	0.224	8.19	0.380	1.70	
1.5	0.259	0.171	8.94	0.298	1.74	

Cross sections with different charm quark mass m_c with the renormalization scale $\mu = 2m_c$ and $\sqrt{s} = 10.6$ GeV.

0.129

9.74

0.230

1.78

More about the scale and comparision with data

Use Brodsky, Lepage and Mackenzie (BLM) scale setting [Brodsky et al. (1983)]

$$\sigma^{(1)} = \sigma^{(0)}(\mu^*)[1 + rac{lpha_s(\mu^*)}{\pi}b(\hat{s})].$$

$m_c(GeV)$	$\alpha_s(\mu^*)$	$\sigma^{(0)}(pb)$	$b(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)}/\sigma^{(0)}$	$\mu^*(GeV)$
1.4	0.348	0.381	3.77	0.540	1.42	1.65
1.5	0.339	0.293	4.31	0.429	1.47	1.72
1.6	0.332	0.222	4.90	0.337	1.52	1.79

Cross sections with different charm quark mass m_c . The renormalization scale $\mu = \mu^* \sim m_c$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

 $L_{J/\psi}$ production at the B-factories, In collaboration with Bing Gong

Polarization parameter α and angular distribution parameter A of J/ψ as functions of p.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

 $-J/\psi$ production at the B-factories, In collaboration with Bing Gong

Momentum distribution of inclusive J/ψ production with $\mu = \mu^*$ and $m_c = 1.4 \text{ GeV}$ is taken for the $J/\psi cc$ channel. The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

 $\Box_{J/\psi}$ production at the B-factories, In collaboration with Bing Gong

Momentum and angular distributions of inclusive J/ψ production.

The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inclusive Quarkonium Production at the B factories $\Box_c \rightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

The fragmentation function of charm into J/ψ

According to the fragmentation mechanism, we have $d\sigma[e^+e^- \rightarrow J/\psi c\bar{c}]$ dE_I/ψ $= \int \frac{dE_c}{F_c} \frac{d\sigma[e^+e^- \to c\bar{c}]}{dF_c} \times D_{c \to J/\psi} \left(\frac{E_J/\psi}{F_c}\right) + (c \leftrightarrow \bar{c})$ $= 2 \int \frac{dE_c}{E_c} \frac{d\sigma[e^+e^- \to c\bar{c}]}{dE_c} \times D_{c\to J/\psi} \left(\frac{E_J/\psi}{E_c}\right)$ where $D_{c \to J/\psi}(z) = D_{\bar{c} \to J/\psi}(z)$ has been used.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ● 今 ♀ ♀

(1)

Inclusive Quarkonium Production at the B factories $\Box_c \rightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

LO Result

$$\frac{d\sigma^{LO}[e^+e^- \to J/\psi c\bar{c}]}{dE_J/\psi} = \frac{4}{\sqrt{s}}\sigma^{LO}[e^+e^- \to c\bar{c}] \times D_{c\to J/\psi}(z)$$

with
$$z = 2E_J/\psi/\sqrt{s}$$
.

Thus it's easy to exact the fragmentation function at LO in α_s :

$$D_{c \to J/\psi}(z) = \frac{1}{\sigma_{c\bar{c}}^*} \frac{d\sigma^{LO}[e^+e^- \to J/\psi c\bar{c}]}{dE_J/\psi}$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\sigma^*_{c\bar{c}}$ is defined as

$$\sigma_{c\bar{c}}^* \equiv 4\sigma^{LO}[e^+e^- \to c\bar{c}]/\sqrt{s}$$

 $c \rightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

LO Fragmentation function of charm into J/ψ with $\mu_r = 2m_c$. As shown in the figure, the result has little difference with the one given by Braaten *et al* [?] as \sqrt{s} goes larger.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 $L_c
ightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

NLO Result

$$\begin{aligned} & \frac{d\sigma^{NLO}[e^+e^- \to J/\psi c\bar{c}]}{dE_J/\psi} \\ = & 2\int \frac{dE_c}{E_c} \frac{d\sigma^{NLO}[e^+e^- \to c\bar{c}]}{dE_c} \times D_{c\to J/\psi}^{NLO}\left(\frac{E_J/\psi}{E_c}\right) \\ = & 2\int \frac{dE_c}{E_c} \frac{d\sigma^{LO}[e^+e^- \to c\bar{c}]}{dE_c} \times D_{c\to J/\psi}^{NLO}\left(\frac{E_J/\psi}{E_c}\right) \\ + & 2\int \frac{dE_c}{E_c} \frac{d\sigma^{NLO}[e^+e^- \to c\bar{c}] - \sigma^{LO}[e^+e^- \to c\bar{c}]}{dE_c} \times D_{c\to J/\psi}^{LO}\left(\frac{E_J/\psi}{E_c}\right) + \mathcal{O}(\alpha_s^4). \end{aligned}$$

$$D_{c \to J/\psi}^{NLO}(z) = f_1(z) - f_2(z)$$
(3)

$$f_1(z) \equiv \frac{1}{\sigma_{c\bar{c}}^*} \frac{d\sigma^{NLO}[e^+e^- \to J/\psi c\bar{c}]}{dE_J/\psi}, \quad \sigma^{NLO*} \equiv \sigma^{NLO} - \sigma^{LO}$$

$$f_2(z) \equiv \frac{2}{\sigma_{c\bar{c}}^*} \int \frac{dE_c}{E_c} \frac{d\sigma^{NLO*}[e^+e^- \to c\bar{c}]}{dE_c} \times D_{c\to J/\psi}^{LO}\left(\frac{E_J/\psi}{E_c}\right)$$
(4)

 $L_{c}
ightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\Box_{c}
ightarrow J/\psi$ fragmentation function, In collaboration with Bing Gong

NLO Fragmentation function of charm into J/ψ with $\mu_r = 2m_c$ (The curves with lower peaks are LO ones). The limit without \sqrt{s} dependence is seen. The one with $\sqrt{s} = 1000 \text{ GeV}$ is a bit unstable because of large number cancelation between $f_1(z)$ and $f_2(z)$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

 J/ψ production in Z decay, In collaboration with Rong Li

Experimental and Leading-order Theoretical Results. [Acciarri:1998]

$$Br(Z o J/\psi_{prompt} + X) = (2.1^{+1.4}_{-1.2}) imes 10^{-4}$$

Dominant process: $Z \to J/\psi + c\bar{c} + X_{,}$ and the total decay width is presented as $\Gamma^{NLO}(\mu) = \Gamma^{LO}(\mu) [1 + \frac{\alpha_s(\mu)}{\pi} (A + \beta_0 ln \frac{\mu}{2m_0} + Bn_f)].$ (5)

 $m_c = 1.4 \text{ GeV}, \ \mu = \mu_{BLM}$ for $J/\psi + c\bar{c}$ and $\mu = 2m_c$ for other processes including ψ' transition.

$\sigma_{J/\psi+c\bar{c}}^{BLM}$ (keV)	$\sigma_{QCD}^{gluon}(keV)$	$\sigma_{QED}^{e,\mu,\tau}$ (keV)	$\sigma_{QED}^{u,d,s}(\text{keV})$	$\sigma_{QED}^{c}(\text{keV})$	$\sigma_{tot}(keV)$	Br.
209	11.9	13.5	8.08	5.62	248	9.92×10^{-5}

 $\mu_0 = 2m_c$. The J/ψ energy distribution in $Z \rightarrow J/\psi + X$. Data points from PRD 59, 054016 1999.

The situation for J/ψ production in Υ decay

LO NRQCD Predictions:

 $Br(\Upsilon \rightarrow J/\psi({}^{3}S_{1}^{8}) + gg) = 6.2 \times 10^{-4}$, M. Napsuciale, Phys. Rev. D 57, 5711 (1998)

 $Br(\Upsilon \rightarrow J/\psi + c\bar{c}g) = 5.9 \times 10^{-4}$, S. Y. Li, Q. B. Xie and Q. Wang, Phys. Lett. B 482, 65 (2000)

 $Br(\Upsilon \rightarrow J/\psi + gg) = orderat \times 10^{-4}$,????

Experimental Data for $Br(\Upsilon \rightarrow J/\psi + X)$:

CLEO	$(11\pm4\pm2) imes10^{-4}$	Phys. Lett. B 224, 445
ARGUS	$< 6.8 imes 10^{-4}$	Z. Phys. C55, 25(1992)
CLEO	$(6.4\pm0.4\pm0.6) imes10^{-4}$	Phys. Rev. D70,072001(2004)

The situation is quite strange ????

 $-J/\psi$ production from Υ Decay, In collaboration with Zhi-Guo He

1. The leading order prediction is

$$\mathcal{B}_{ ext{Direct}}(\Upsilon
ightarrow J/\psi + c ar{c} g) = 3.9 imes 10^{-5}.$$

Phys.Rev.D81:054030,2010.e-Print: arXiv:0911.0139 [hep-ph] 2. Part of NLO prediction from $\Upsilon \rightarrow J/\psi + gg$ is

$$\mathcal{B}_{ ext{Direct}}(\Upsilon
ightarrow J/\psi + X) = 3.1 imes 10^{-5}.$$

3. The full QCD correction for the inclusive J/ψ production in Υ decay would be a very interesting and challenge work for explaining the experimental data.

4. Further experiment measurement on the problem is expected.

- Very good convergence behaviour is found in the $J/\psi gg$ channel, with a K factor of about 1.20 and significantly improved scale dependence. And the prediction for the total cross section fits the data well.
- A large K factor (about 1.70) is obtained in the J/ψcc̄ channel, but the QCD perturbative expansion can be improved if the BLM scale setting is adopted. And the results can account for the new data.
- The momentum distribution of both channels are consistent with data.
- The angular distribution of neither channel can fit the data, unless they are added together.

Further experiment measurement on the J/ψ polarization is expected.

Summary

- For J/ψ production in Υ decay, the leading-order theoretical prediction is one order in magnitude smaller than experimental measurement. The full NLO QCD correction would be a very challenge work to explain the experimental data.
- The NLO results for J/ψ production in z^0 decay is just half of experimental measurement.
- $c \rightarrow J/\psi$ fragmentation function is obtained at NLO level for then first time.

Summary

Thank you!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- K. Abe et al. (Belle), Phys. Rev. Lett. 89, 142001 (2002), hep-ex/0205104.
- P. Pakhlov (Belle) (2004), hep-ex/0412041.
- B. Aubert et al. (BABAR), Phys. Rev. D72, 031101 (2005), hep-ex/0506062.
- G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. **D51**, 1125 (1995).
- E. Braaten and J. Lee, Phys. Rev. D67, 054007 (2003), hep-ph/0211085.
- K.-Y. Liu, Z.-G. He, and K.-T. Chao, Phys. Lett. B557, 45 (2003), hep-ph/0211181.
- K. Hagiwara, E. Kou, and C.-F. Qiao, Phys. Lett. B570, 39 (2003), hep-ph/0305102.

- Y.-J. Zhang, Y.-j. Gao, and K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006).
- B. Gong and J.-X. Wang, Phys. Rev. **D77**, 054028(2008).
- G. T. Bodwin, J. Lee and E. Braaten, Phys. Rev. Lett. 90, 162001(2003a); Phys. Rev. Lett. 95, 239901(E) (2005).
- K. Abe et al. (Belle), Phys. Rev. **D70**, 071102 (2004).
- B. Gong and J.-X. Wang, Phys. Rev. Lett. 100, 181803 (2008b), 0801.0648.
- K. Abe et al. (BELLE), Phys. Rev. Lett. 88, 052001 (2002a), hep-ex/0110012.
- B. Aubert et al. (BABAR), Phys. Rev. Lett. 87, 162002 (2001), hep-ex/0106044.
- R. A. Briere et al. (CLEO), Phys. Rev. **D70**, 072001 (2004).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- P. Pakhlov et al. (Belle Collaboration), Phys. Rev. D79, 071101 (2009).
- Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, Phys. Rev. Lett. **102**, 162002 (2009), 0812.5106.
- Y.-J. Zhang and K.-T. Chao, Phys. Rev. Lett. **98**, 092003 (2007).
- S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).