

WORKSHOP ON QUARKONIUM

7th International Workshop on Heavy Quarkonia

Organized by the Quarkonium Working Group

Preparation of analyses of quarkonium states at LHCb

Johannes Albrecht CERN

on behalf of the LHCb collaboration

Contents:

- 1. Introduction & LHCb
- 2. Highlights from 2010 run
- 3. Preparation of J/ψ and B cross section measurement
- 4. Other Quarkonium studies
- 5. Summary

1) Introduction & LHCb

- 36 years after the J/ψ discovery, the production mechanism in proton collisions is still unclear
 - Color singlet and color octet mechanisms describe the p_T spectrum and cross section of the J/ ψ as measured by Tevatron, **but not the polarization**
 - Other models such as color evaporation model, kt factorization, soft color interaction model cannot describe the data either
 - New data from LHC experiments will help to resolve this issue
- Cross section measurements of prompt J/ψ and J/ψ from b are important first steps for later LHCb analyses

The LHCb Detector

- Performance numbers relevant to quarkonium analyses:
 - Charged tracks $\Delta p/p = 0.35$ % 0.55%, $\sigma(m)=10-25$ MeV/c²
 - − ECAL σ (E)/E= 10% (E/GeV)^{-1/2} ⊕ 1 %
 - Muon ID: $\varepsilon(\mu \rightarrow \mu) = 94$ %, mis-ID rate $(\pi \rightarrow \mu) = 1-3$ %
 - Vertexing: proper time resolution 30-50 fs
 - Trigger: dominantly software

All LHCb simulation studies until recently assumed E_{cm} =14 TeV & annual event yields of 2 fb⁻¹

Beam Energy

Compare expected cross-section at design energy with 3.5 TeV

Small penalty in statistical precision

(all MC predictions shown assume bb cross-section of 500 µb at 14 TeV)

Luminosity

LHCb design luminosity is $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ – will be in this regime in 2011 ! Lower luminosities of 2010 allows for lower trigger thresholds

LHCb physics prospects in 2010 – 2011 are excellent!

Johannes Albrecht

Luminosity

LHCb recorded luminosity:

Online Luminosity determined from #triggers scaled to pythia cross section → large uncertainty

Precise Luminosity measurement:

Expected integrated luminosity uncertainty ~5% through measurements of beam profile in beam-gas and beam-beam collisions.

(Already determined to 15% in 2009, with uncertainty limited by knowledge of beam intensities)

21. May 2010

Johannes Albrecht

First J/ψ data results

J/ψ mass resolution Data: 14.1±1.4 MeV MC: 12.1±2 MeV

First J/ψ data results

21. May 2010

Johannes Albrecht

- Not yet enough J/ψ for muon efficiency studies
- Mis-ID: K_{S}^{0} and Λ used as clean samples of π^{\pm} and p^{\pm}
 - Proton → Muon mis-ID: (0.18 ± 0.02) %; MC: (0.21 ± 0.04) %
 - Pion → Muon mis-ID: (2.38 ± 0.02) %; MC: (2.34 ± 0.02) %

21. May 2010

Trigger

Level-0

'High-pt' signals in calorimeter & muon systems

→ 2010: apply very loose cuts, seed regions of interest

<u>HLT1</u>

Associate L0 signals with tracks, require IP, Pt \rightarrow 2010: reduce requirements w.r.t, initial settings, Initially min. Bias trigger $p_T(\mu) \sim 1 \text{GeV} \text{ or } m(\mu\mu) > 2.5 \text{GeV}$

HLT2

Full detector information available. Look for inclusive Signatures, some exclusives → 2010: initially not needed, later with very loose suppression

Trigger

Level-0

'High-pt' signals in calorimeter & muon systems

→ 2010: apply very loose cuts, seed regions of interest

<u>HLT1</u>

Associate L0 signals with tracks, require IP, Pt \rightarrow 2010: reduce requirements w.r.t, initial settings, Initially min. Bias trigger $p_T(\mu) \sim 1 \text{GeV or m}(\mu\mu) > 2.5 \text{GeV}$

Evaluation of J/w trigger efficiency

Data collected so far in pass through mode Evaluate which events would have triggered (only unbiased single and dimuon):

data:	82±1%		
MC:	91 %		

LHCb Event Display

Preparation of J/ψ and B cross section measurement

First LHCb B+ \rightarrow J/ ψ K+ candidate

• Studies presented here (Pythia 6.3, $\sqrt{s} = 14$ TeV)

- Production of J/ ψ through **Color Singlet Model** \rightarrow **unpolarized**

- Current MC productions (Pythia 6.4, $\sqrt{s} = 7$ TeV)
 - Color Octet Model added, tuned to reproduce CDF
 - Produce unpolarized J/ ψ

- Selection based on two identified muons, p_T>0.7GeV
- Analysis example for 3.2M selected J/ψ
 - Invariant mass plot on fully simulated minimum bias events (with all background included):
 - Mass resolution: 11.0 ± 0.4 MeV/c2
 - S/B=17.6 \pm 2.3 in $\pm 3\sigma$ mass window

- Combined fit to invariant mass and pseudo proper-time allows for both prompt J/ ψ and b production measurement
 - 7 bins of p_t : 0 < pt < 7GeV/c
 - 4 bin of pseudo-rapidity: $3 < \eta < 5$
 - \rightarrow change to rapidity

- Study fit procedure to determine cross section
 - Signal: Inclusive J/ψ sample
 - <u>Background</u>: toy Monte-Carlo reproducing behaviour (mass and pseudo-lifetime) seen on the Minimum Bias sample
 - Sample corresponding to 0.8 pb⁻¹, $\sqrt{s} = 14 \text{ TeV}$

• Detector acceptance as a function of helicity angle $\cos\theta$

- LHCb acceptance generates an artificial polarization
 → large influence of polarization on measurement
- First step: Treat polarization as systematic error

- Study the effect of ignoring the polarization dependence of the efficiency (J/ ψ are not polarized in the LHCb Monte Carlo)

$\alpha_{\text{«data»}}$	σ _{Measured} α=0	Input $\sigma_{\text{«data»}}$
0	2758 nb ± 27 nb	2820 nb
+1	2738 nb ± 27 nb	3190 nb
-1	2787 nb ± 28 nb	2286 nb

Systematic of up to 25 %

- Second step: Measure polarization
 - in bins of η and p_T
 - separating prompt and J/ψ from b
 - with full angular analysis, in different reference frames

	-			Term			
Term symbol	PUPC	Particle	mass (MeV/c ²) [1] &	symbol n ^{2S+1} LJ	P (J' ')	Particle	mass (MeV/c ²)[2]
n ^{2S+1} Lj	. (5 /	Turticio		1^1S_0	0*(0-*)	η _b (1S)	9,388.9 ^{+3.1} / _{-2.3} ± 2.7
1 ¹ S ₀	0*(0-+)	η _c (1S)	2,980.3 ± 1.2	1 ³ S ₁	0-(1)	Y(1S)	9,460.30 ±0.26
1 ³ S ₁	0-(1)	<i>J/ψ</i> (1 <i>S</i>)	3,096.916 ±0.011	1 ¹ P ₁	0-(1+-)	<i>h_b</i> (1 <i>Р</i>)	
1 ¹ P ₁	0-(1+-)	h _c (1P)	3,525.93 ±0.27	1 ³ P ₀	0*(0**)	<u> _{Хьо}(1<i>P</i>)</u>	9,859.44 ±0.52
1 ³ P ₀	0*(0**)	χ _{c0} (1 <i>P</i>)	3,414.75 ±0.31	1 ³ P1	0*(1**)	χ _{b1} (1 <i>P</i>)	9,892.76 ±0.40
1 ³ P ₁	0*(1 ⁻⁺)	χ _{c1} (1 <i>P</i>)	3,510.66 ±0.07	1 ³ P ₂	$0^{+}(2^{++})$	_{Хь2} (1 <i>Р</i>)	9,912.21 ±0 .40
1 ³ P ₂	0 ⁺ (2 ⁻⁺)	χ _{c2} (1 <i>P</i>)	3,556.20 ±0.09	2^1S_0	0+(0-+)	η _b (2S)	
2 ¹ S ₀	0 *(0		r Quar	<or< td=""><td>MU</td><td>m Studies</td><td>10,023.26 ± 0.31</td></or<>	MU	m Studies	10,023.26 ± 0.31
2 ³ S ₁	0-(1	ψ(3686)	3,686.09 ±0.04	1 ¹ D ₂	0+(2-+)	η ₆₂ (1D)	
1 ¹ D ₂	0 ⁺ (2 ⁻⁺)	$\eta_{c2}(1D)^{\dagger}$		PLE	oct	ion)	10,161.1 ±1 .7
1 ³ D ₁	0-(1	ψ(3770)	3,772.92 0.35		0 (2-)	Y2(10)	
1 ³ D ₂	0-(2	$\psi_2(1D)$		1 ³ D ₃		Y ₃ (1 <i>D</i>)	
1 ³ D ₃	0-(3	$\psi_{3}(1D)^{\dagger}$		2 ¹ P ₁	0~(1+-)	$h_b(2P)$	
2 ¹ P ₁	0-(1+-)	$h_c(2P)^{\dagger}$		2 ³ P ₀	0*(0**)	χьο(2Р)	10,232.5 ±0.6
2 ³ P ₀	0*(0**)	χ _{c0} (2 <i>P</i>) [†]		2 ³ P ₁	0*(1**)	χь1(2Р)	10,255.46 ±0.55
2 ³ P ₁	0*(1**)	χ _{c1} (2P) [†]		2 ³ P ₂	0*(2**)	χь2(2Р)	10,268.65 ±0.55
2 ³ P ₂	0*(2**)	χ _{c2} (2P) [†]		3 ³ S ₁	0-(1)	Y(3S)	10,355.2 ±0.5
? [?] ??	0 [?] (? [?])†	X(3872)	3,872.2 ±0.8	4 ³ S ₁	0-(1)	Y(4S) or Y(10580)	10,579.4 ± 1.2
? [?] ??	? [?] (1)	Y(4260)	4,260 +8	5 ³ S ₁	0-(1)	Y(10860)	10,865 ±8
				6 ³ S ₁	0-(1)	Y(11020)	11,019 ±8

<u>χ_c</u>→J/ψγ

- A large fraction of prompt J/ψ come from $\chi_{c1,2} \rightarrow J/\psi \gamma$
- J/ψ selection, adding a photon with p_T(γ)>500 MeV/c (from ECal)
- Important observables
 - Fraction of J/ ψ from $\chi_{c1,2}$
 - $\mathsf{R}_{\chi c} = \sigma(\chi_{c1}) / \sigma(\chi_{c2})$

$\psi(2S) \rightarrow \mu^+ \mu^-$

- Measurement of the ratio σ(ψ(2S)) / σ(J/ψ), as a function of p_T, separating prompt and from b
- Additionally: up to 20% systematic error due to polarization

$$\frac{\varepsilon_{rec\&sel\&trig}(\psi(2S))}{\varepsilon_{rec\&sel\&trig}(J/\psi)} = 1.01 \pm 0.07(stat)$$

<u>Y(1s):</u>

- Mass resolution: 37 MeV/c²
- Similar reconstruction and resolutions will be obtained for the Y(2S) and Y(3S) states:
 → separate the 3 Upsilon states

<u>χ_{b2}(1P):</u>

- Reconstruction of $\chi_{b2}(1P) \rightarrow Y(1S) \gamma$
- Photon detected in ECAL, with $p_T(\gamma) > 500 \text{ MeV/c}$
- Mass resolution: 47 MeV/c²

- Measurement of mass, lifetime and production cross section using the decay modes:
 - $B_c^+ \rightarrow J/\psi \pi^+$: expect **310** signal events for 1 fb⁻¹ @ $\sqrt{s} = 14 \text{ TeV}$
 - $B_c^+ \rightarrow J/\psi \mu^+ \nu X$: signal yield one order of magnitude larger, production cross section measurement possible with 2010 data

- Plan to measure prompt and non-prompt J/ψ cross section
 - Early analysis: 3 million J/ $\psi \rightarrow$ good statistics in 3< η <5, 0< p_T <7GeV
 - Second step:
 - measure J/ψ polarization
 - extend rapidity and transverse momentum range
- Other quarkonium states will also be studied:
 - $\chi_{c1,2}$, $\psi(2S)$ production
 - Y(1S) $\rightarrow \mu^+ \mu^-$, $\chi_{b2}(1P)$, $B_c^+ \rightarrow J/\psi + X$
 - Not discussed here: h_c , X(3872) and Z(4430)[±]
- First studies with 1nb⁻¹ of 2010 data
 - O(200) prompt and first non-prompt J/ ψ candidates reconstructed
 - Invariant mass resolution in agreement with MC (15% stat error)

Backup Slides

- Besides di-muon states, LHCb detector performances will allow to study other states though hadronic decay modes
- Reconstruction of $h_c \to \eta_c \, \gamma$ is difficult (E($\gamma) {\sim} 500$ MeV in the h_c rest frame)
- Hadronic decay channels look promising: $\rm h_c \to pp, \, h_c \to \phi \; K^+ \; K^-, \, h_c \to \phi \; \pi^+ \; \pi^-$
- In particular, $h_c \rightarrow ppbar$ probably visible with first year data, which will give access to $\sigma(h_c)xBr(h_c \rightarrow ppbar)$ relative to $\sigma(J/\psi)xB(J/\psi \rightarrow ppbar)$

Expected ppbar mass distribution:

• Assuming $Br(h_c \rightarrow pp) = 0.12$ %,

• Toy Monte Carlo for background, reproducing background seen on fully simulated minimum bias events,

• 100 pb⁻¹ at $\sqrt{s} = 10$ TeV

$$\frac{\sigma(h_c)\times \mathscr{B}(h_c\to p\bar{p})}{\sigma(J/\psi)\times \mathscr{B}(J/\psi\to p\bar{p})}$$

26/24

LHCD

cross check from the measurements of $\frac{\sigma(\chi_{cl}) \times \mathscr{B}(\chi_{cl} \to p\bar{p})}{\sigma(J/\psi) \times \mathscr{B}(J/\psi \to p\bar{p})}$

X(3872) and Z(4430) $^{\pm}$

- Reconstruction of X(3872) $\rightarrow J/\psi \pi^+ \pi^-$ (and the control channel $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$), prompt or from b: systematic study of this state.
- Expect 1800 reconstructed B[±] → X(3872) K[±], with 2 fb⁻¹ at √s= 14 TeV, allowing to disentangle unknown quantum number J^{PC}: 1⁺⁺/2⁻⁺.

Expected distributions for 1⁺⁺ and 2⁻⁺ hypotheses for 2 fb⁻¹ of data. Generator level only, no detector simulation, no acceptance corrections yet!

- Similar studies for $B^0 \to Z(4430)^+ (\to \psi(2S)\pi^+)K^-$
- About 6200 signal events can be selected from 2 fb⁻¹ of data at \sqrt{s} =14 TeV, assuming B(B⁰ \rightarrow Z(4430)⁺ K⁻)xB(Z(4430)⁺ $\rightarrow \psi(2S)\pi^+$) = 4.1x10⁻⁵
- Possible to confirm the Belle discovery with about 100 pb⁻¹ of data at $\sqrt{s} = 7$ TeV.

- <u>PYTHIA 6.3</u> for the studies shown here:
 - Production of J/ ψ through **Color Single Model**.
- <u>PYTHIA 6.4</u> for the current Monte Carlo productions:
 - With Color Octet Model added, tuned to reproduce CDF measurements see note CERN-LHCb-2007-042.
- <u>EvtGen</u> for decays:
 - Generator package which allows to have a detailed description of $\mathbf{b} \rightarrow \mathbf{J}/\psi \mathbf{X}$ decays.
 - Also allows correct angular correlations in decays of polarized particles.
- <u>PHOTOS</u> for **radiative corrections**.

