Update on the Helical Cooling Channel



Introduction

e Studied capability of helical solenoid magnet how
to desigh embedded RF cavity into the magnet

— Try to make larger bore coil

— In this talk, the occupancy of coil is 50 % in
longitudinal direction (gap between coils = coil length)

* Found some successful design

* Then designed adiabatic matching section based
on helical solenoid coil



Latest emittance evolution curve in HCC

Simulation result by using analytical EM field expression
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Parameter list

unit m T T/m T m GHz mmrad mm mm’ Transmission
1 0 204 42.8 12900 1.00
2 40 1.3 -0.5 -4.2 1.0 0.325 597 19.7 4159 0.92
3 49 14 -0.6 -4.8 0.9 0.325 401 15.0 10.8 0.86
4 129 1.7 -0.8 52 0.8 0325 1.02 4.8 32 0.73
5 219 2.6 2.0 -8.5 0.5 0.65 0.58 2.1 2.0 0.66
6 243 32 3.1 9.8 04 0.65 042 1.3 0.14 0.64
7 273 4.3 5.6 -141 03 0.65 0.32 1.0 0.08 0.62
8 303 4.3 -5.6 -141 03 1.3 0.34 1.1 0.07 0.60

* Lattice parameter is designed for pu* with left-handed helicity beam

* Average momentum = 200 MeV/c
* b is a helical dipole, b’ is a helical field gradient (=6b/0p),
and bz is a solenoid field on the reference orbit
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Helical solenoid magnet
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Helical Solenoid (HS) magnet

* Consists of a small pancake coil

= 7 * Coil center locates on the reference orbit

\(%@@@ o > * Gap between coils is designed the same
P et as the coil length in this presentation

b It
- /\ Schematic front view of HS magnet
brl Coil-2

* Shows coil center located on the reference orbit

* Let us find the field map at coil-0 center
HCC magnet center

* bz is mainly produced by coil-0

/ * b is produced by br1 and br2 that are generated
from neighbor coils (coil-1 and coil-2)
* b’ is tuned by adjusting coil size

Reference orbit



Add pure solenoid magnet

All three lattice parameters (b, bz, b’) can be tuned easily
by adding a pure solenoid magnet
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Tune bore radius of HS coil

Momentum [GeV/c]

Variation of b, bz, b’ as a function of inner

radius of HS coil

* b and bz are adjusted by current density
to satisfy the same designed momentum
at each lattice condition

* No solenoid applied in this study

* b’ is monotonically reduced at larger coil
bore

Variation of acceptance of HS magnet as a

function of inner radius of HS coil

* Inject pencil beam with large momentum
spread (0.1 < p < 0.4 GeV/c)

* No absorber no RF

* Larger bore coil has larger momentum
acceptance

* Interestingly, the zero phase slip factor
(=p/t 0t/0p) is shifted

— Dave Neuffer brough up a new

rebuncher (not covered in this talk)



b,b', b, [T.T/m]

Time of Flight [ns]

025 030 035 040

Reoil pos [m]

Reference radius

020 025 030 035

Momentum [GeV/c]

Coil center position dependence

Variation of b, bz, b’ as a function of HS coil center
position

 Larger b’ is needed for cooling

* | asked by myself why coil center position must be

on the reference orbit
* By moving coil outward from magnet center, b’

can be enhanced significantly

Variation of HS magnet as a function of HS coil

center position
* Larger HS coil displacement generates larger

momentum acceptance



Field uniformity in HS magnet

Compare analytical field expression (Bessel) vs HS magnet

p =400 mm
O T - l(II) — Z(l)lil — 3[II[: - -11,'.) . .
ol Ref orbit .
( : Solenoid field
st 7 in analytical field
N !—Iellcal d!pole.ﬁeld 5 @
_ in analytical field t N I A
25T | -
. Ref orbit P~ 4%0™™
05T}
I p =600 mm
ol Reforbit — B .. ,

15 Helical dipole field
in HS magnet

20T R BT S | @

200 400 =T
- “ 5 =600 mm

b and bz in HS magnet are uniformly distributed at large radius
— good for high p particle



Design 15t HCC

Size of 325 MHz RF cavity: r=0.35m

Unit m m m T T/m T T m GeV/c A/mm?
HS 0.16 0.28 0.35 0.025 20 040 131 0.53 055 -431 023 0.202 2.45 -194
Bessel 131 055 432 028 0.2 2.38

Table 4: Parameter list for first HS magnet
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* No absorber, no RF
* HS magnet has larger momentum acceptance than analytical field
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Design near end HCC

Size of 650 MHz RF cavit =0.18 m
--------h------

Unit m m T T/m T T m GeV/c A/mm?
HS 0.063 0.158 0.18 0.28 o.o125 16 326 456 673 -107 0083 0.0 071  -3329
Bessel 322 3.14 106 0093 0.2 1.02

Table 5: Field parameter for second final HCC magnet (A = 0.4 m)
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* No absorber, no RF
* No big difference between HS magnet and analytical field (why??)
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Matching section

Schematic view of HS with matching section

* Matching section locates between straight
channel and helical magnet

* Matching must generate proper transverse
kick and position offset

* HS matching magnet is designed
* HS coil center radius is linearly increased
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Upstream matching section 0->0.28 0.35 0.40 -220 --193.6
Cooling section 0.28 0.35 0.40 -193.6 12
Downstream matching section 028->0 0.35 0.40 -193.6 - -220 5.5

Table & Parameter for matching section—— Analyze perturbation in matching section
A PR e * Plot shows perturbation oscillation
: ~ ¥ E , * By tuning coil geometry and current density,
' perturbation oscillation in the HS cooling

section can be minimized

uScooling section | . A\ - * Analytical investigation of this design is
—o00s b > 5 : ‘.:
< > < >0y underway
¥ * From preliminary study, matching section has
U Bma/rl\ (Tatching section

VIAPFricay ¥rget acceptance than the HS cooling channel

Figure 21: Amplitude of perturbative oscillation in matching section.



Integrate RF and HS magnet

RF in HS coil (Red: RF, While HS coil)

Current leads
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6/11/10

<>

‘:‘J‘J‘A
Ill‘l
I

'i"' |

=
&

RF in HS coil

l 300 K skin

B | 77K shield

4 K 20 Atm Pressure Wall |

| 4 K HTS Anti-solenoid |

| 4 K, 20 Atm LHe Volume |

4 K HTS HS coils

| 30 K - 4K Thermal and Gas |

|30 K 20 Atm GH2 HPRF

|| Be Grids and cavity coated with

hyperconductive Aluminum or

RF  cavity feedthroughs

thermally insulated from

Include with infrastructures
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Conclusion

Studied HS magnet and found its great
capability to apply for muon cooling

Cooling simulation in HS magnet is on going

First matching design has been done

— Frontend group works hard to find better
matching design that has larger momentum
acceptance

Investigated some other applications
— Rebuncher by Dave N.



