

- **II Procedure for cooling muons**
- III "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- **VI** Results along the way
- VII Summary

- **II Procedure for cooling muons**
- III "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- VI Results along the way
- VII Summary

Pierrick M. Hanlet – 11 June 2010

- **II Procedure for cooling muons**
- **III** "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- **VI** Results along the way
- VII Summary

- "Cooling" muons refers to reducing the emittance of the muon beam.
- Muons are created in tertiary interactions, and so are created with large inherent emittance: $p + N \rightarrow \pi + X$ $\downarrow \rightarrow \Pi + X$
- Due to short muon lifetime, the only viable option is ionization cooling. Must cool AND accelerate rapidly:

MICE will measure a 0.1% absolute cooling effect create beam of muons

- 1) identify particles and reject background
- 2) measure single particle emittance
- 3) "cool" muons in low-Z absorber
- 4) restore longitudinal momentum component with RF
- 5) remeasure single particle emittance 6) identify particles to reject electrons

- **II Procedure for cooling muons**
- III "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- VI Results along the way
- VII Summary

Aspirational Schedule

- **II Procedure for cooling muons**
- **III** "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- **VI** Results along the way
- VII Summary

Description

MICE Collaborators

Description: MICE

- •Beamline create beam of muons
- •Particle ID verify/tag muons
- •Tracker measure emittance
- •Absorber (LH2 or LiH) cooling
- •RF reestablish longitudinal p

Description: Beamline

Description: Beamline

MICE Beamline consists of:

- Target
 - dips into ISIS accelerator
 1 Hz

Conventional magnets

- 2 dipoles select pion momentum
- select muon after pion decay
- 3 quadrupole triplets for focusing
- Superconducting decay solenoid
 - extends pion decay path
 - 5 T
 - **5** *m* **long** Pierrick M. Hanlet – 11 June 2010

- Target modified version under way
- Proton absorber initial version tested
- Beamstop finished
- Diffuser under construction
- Radiation shutter under construction

Description: PID

<u>Upstream PID:</u> <u>discriminate p, π, μ</u>

- Beam profile monitors
- Threshold Cerenkov
- Time of Flight ToF0 & ToF1

Downstream PID: <u>reject decay electrons</u> • Time of Flight - ToF2 • Kloe-like Calorimeter - KL

• Electron-muon Ranger - EMR

Description: Step II

Description: Tracking

•Two trackers - before/after absorber
•Measures x, y, x', y'
•5 stations/tracker
•3 stereo planes/station (U/V/W)
•1400 350μm fibers/plane double layer, 7 fibers/group
•<0.2% dead channels
•>10.5 photoelectrons/MIP
•430μm RMS position resolution

- 4 T superconducting
- 2 m long
- 20 cm warm bore
- 5 coils:
 - 1 main tracker coil
 - 2 end coils
 - 2 matching coils
- closed-cycle pulse-tube cryo-coolers

Pierrick M. Hanlet – 11 June 2010

- **II Procedure for cooling muons**
- III "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- VI Results along the way
- **VII** Summary

Status: Target

December 2008 melted target

Since December 2008:

- new target hardware design
 - first target works flawlessly
 - demo target failed immediately
 - new demo target!
- new target DAQ (coming soon)

Since January 2010:

- Linde Decay solenoid compressor & cold box annual maintenance left DS inoperable – leaks, etc
- Leaks repaired 10 day cool down now in 5 days!
- LHe level probe broken replaced, calibrated, working

- Target working new design in progress
- Beamline conventional magnets ready
- Decay solenoid operational
- All PID detectors (not EMR), installed
- ToF0, ToF1, Ckov calibrated
- Collecting ToF2/KL calibration data
- Initial emittance measurements w/ToF
 Step I nearing completion!

Steps II and III require trackers for first emittance measurements

- Both trackers ready and tested with cosmic rays
 - High efficiency tracking
- Delays in spectrometer solenoids critical path

E1, C, E2

Status: Tracker Solenoid

Cryomech AL330 •Additional cryocooler added This plate move 10" HTS leads enlarged Additional instrumentation 6 successful training runs circuit to M2 coil opened VO continued to train

Magnet 2 disassembly is continuing

being worked on full time by tech

• Tower has been completely removed

- along with items protruding above vacuum vessel envelope
- fill and vent lines ground off

Status: Tracker Solenoid

 Matching coil opened during testing Open was determined to be in cold mass region Requires complete dismantling Heat load determined to be higher than in original design Experts investigating

- **II Procedure for cooling muons**
- III "Aspirational" schedule
- **IV** MICE description steps I and II
- V Status the good, bad, and ugly
- VI Results along the way
- VII Summary

Status: Where are we?

The blue line encloses the calibrated area in the TOF stations.

Results: proton absorber

ToF distributions

Results: Ckov calibration

Pierrick M. Hanlet – 11 June 2010

Early results: Where are we?" OF TECHN

	3,140	3,200	3,240	- finding the element (3,240) means to find the BL optics that matches the MICE optics for a beam of 3 mm rad at a P=240 MeV/c	
н.	_				
	6,140	6,200	6,240		
				the element (10,200) is the RI	
	10,140	10,200	10,240	optics matching a MICE beam with 10 mm rad at P=200 MeV/c	
This pair is our goal: how do we got it?					
Ľ	nis pair is oui	goal: now do N			

OGY

Summary: Summer run plan

- •13 June 16 hour activation run, beam loss 4V, negatives
 - •muon beam studies
 - begin emittance-momentum matrix studies
- •15 June Particle Rate vs Beam Loss (negative particles)
 - •5.0V 0.5V in steps of 500mV
- •16 June Particle Rate vs Beam Loss (positive particles)
 - •5V to 1 V losses, etc
 - •Beam Bump Study
- •22-25 June Start of User Run
 - •2—3 days of ToF calibration
 - •1 day KL calibration
- •Monday June 28 August 12
 - •data taking for muon beam emittance measure 9 points on e-p matrix
 - vary & optimize upstream beam line
 - vary D1 to modify incoming beam
 - •vary D2
 - •modify downstream quads as triplets and individually to compare w/simulation
 - •need to understand clearly what beam looks like at the face of the diffuser in order to appropriately tune for cooling measurement
 - •estimate 2-3 days/point on the matrix
 - •do for negative polarity and then switch and do for positive polarity

Pierrick M. Hanlet – 11 June 2010

- Muons observed at MICE!
- Target and Decay Solenoid operational
- PID detectors in place and being calibrated
- Tracker working
- Begin emittance studies with ToF
- <u>Step I is well underway!</u>
- Delay in spectrometer solenoids