Pavel Snopok University of California Riverside

June 25, 2010

Outline

TODOs from last meeting

TODO:

- Achieve proper phase rotation.
- Find a way to do it in a (semi-)automatic fashion for future simulations. G4Beamline built-in "tune" command can only tweak RF gradient.
- Compare outcome to ICOOL.
- Use happily ever after (hopefully).

Phase rotation issue

Comparing the ICOOL and G4beamline logfiles revealed discrepancies causing problems in the rotator.

RF diagnostics in the phase rotator (excerpt)

REG 225 229 233 237 241 245 249	Z 112.98 113.73 114.48 115.23 115.98 116.73 117.48	FREQ 231.67 230.19 228.78 227.42 226.13 224.90 223.72	GRAD 12.000 12.000 12.000 12.000 12.000 12.000 12.000	0.416 0.419 0.421 0.424 0.427	N 63E-06 37E-06 12E-06 87E-06 61E-06 36E-06 10E-06	T2REFMN 0.45701E-06 0.46003E-06 0.46305E-06 0.46606E-06 0.46906E-06 0.47205E-06 0.47503E-06
Mom.	change,	233.5 MeV/c:		Mom.	change,	154 MeV/c:
REG 227 231 235 239 243 243 247 251	Z 113.35 114.10 114.85 115.60 116.35 117.10 117.85	Pz 233.500 233.500 233.500 233.500 233.500 233.500 233.500		REG 227 231 235 239 243 247 251	Z 113.35 114.10 114.85 115.60 116.35 117.10 117.85	Pz 155.495 156.986 158.472 159.955 161.433 162.907 164.377

Phase rotation issue

Rotator RF frequency calculation issue

• Using the time of flight formula $t_{ref\{1,2\}} = \frac{z}{v_{ref\{1,2\}}}$,

 $v_{ref\{1,2\}} = \frac{p_{ref\{1,2\}}}{\sqrt{p_{ref\{1,2\}}^2 + m^2}}$ worked ok in the buncher, since the

momenta of both reference particles were constant.

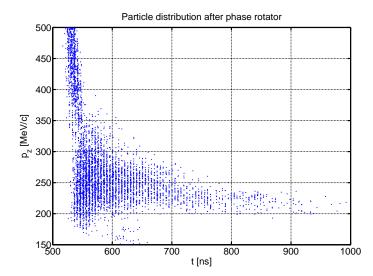
- In the phase rotator the first reference particle momentum stays constant, while the second one increases from 154 MeV/c to 233.5 MeV/c, so the formula has to take that change into account.
- In ICOOL this is done naturally, since the lattice is laid out cell by cell, the reference particles are tracked along, and the RF frequency is calculated based on the current values of p_{ref} and t_{ref} (RF model 10).
- To my knowledge there is no similar mechanism in G4beamline, in other words, I cannot track my reference particle for one cell to obtain the new value of p_{ref} for the next cell.

Phase rotation issue

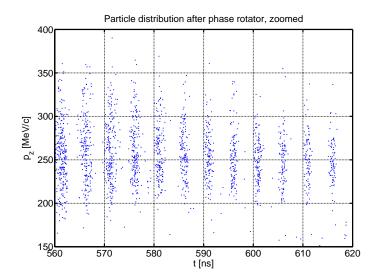
Possible solutions

- Derive and use an analytical expression taking into account the fact that p_{ref} is changing (estimate energy gain per RF).
- Import RF frequency data from ICOOL. I use it for the time being as a temporary solution.
 - Could we keep it as a permanent solution?
 - Apparently, not, since we want to use G4beamline for full-blown simulations and dynamics optimization—need a self-consistent approach.
 - Need to discuss the issue with Tom Roberts.

Simulation results

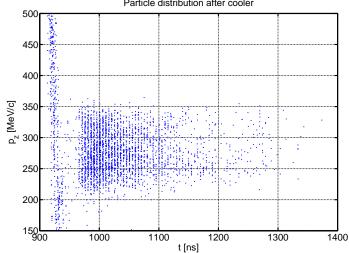

Simulation results

Numerical results


Region	Particle count		
Initial	9392 π (94%)		
distribution	331 μ (3.3%)		
after	236 π		
Rotator	7154 μ		
after	0 π		
Cooler	3621 μ		

- Initial distribution of 10000 particles is used for tracking.
- Only 50% of muons survive the cooling channel (starting from the end of rotator).
- Is that a common particle loss for the cooling channel?

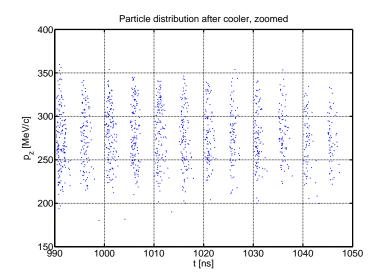
After rotator



After rotator, zoom

10/13

After cooler



Particle distribution after cooler

Simulation results

After cooler, zoom

Summary

Summary

- The G4beamline decks for both the baseline and the discrete lattice are working!
- The issue with phase rotation has been "fixed".
- TODO: get feedback on implementing a more permanent solution for bunch rotation ("model 10 issue").
- TODO: compare ICOOL + G4beamline in terms of μ/p yield and emittance behavior.
- TODO: run simulations with more particles.