Muon Collider Magnets

Magnet System Department, July 25, 2010 Fermilab/TD

- 1. Helical Solenoid (HS) Model 2 & 3
- 2. Helical Solenoid Cooling Section
- 3. Muon Collider Dipoles & Quadrupoles
- 4. HTS Helical Solenoid Model
- 5. R&D towards 50 T solenoids

HS 4-Coil Model 2

Table 1: Solenoid Parameters

Parameter	Units	Value
Coil inner diameter	mm	426
Coil outer diameter	mm	455
NbTi superconducting cable	mm	12.34 x 1.46
Cable critical current at 7 T, 4.2 ${ m K}$	А	9660
Jc (non-Cu)	A/mm ²	1730
Copper to superconductor ratio		1.5:1
Strand diameter	mm	0.8
Helical orbit radius	mm	255
Number of turns per coil		10
Coil width	mm	20

Improved:

- Leads design
- Two stage epoxy impregnation
- Cable closer to rectangular
- Electrical insulation

Model 2 built and waiting a time slot for test

Helical Solenoid Cooling Section

Published IPAC10 MOPEB051

MC Dipoles & Quadrupoles

Q1 (a), Q2 (b), Q3-Q5 (c) cross-sections.

MC Storage Ring dipole based on 4-layer blocktype coil (left) or 4-layer shell-type coil (right).

IR dipole cross-section.

Table 6: IR Quadrupole Parameters.

Parameter	Q1	Q2	Q3-Q5
Aperture (mm)	80	110	160
B _{max} coil at 4.5 K (T)	12.76	13.19	13.49
G _{max} apert at 4.5 K (T/m)	281.5	209.0	146.0
$G_{on}(T/m)$	250	187	130
Inductance at G _{op} (mH/m)	3.57	6.58	12.88
Stored energy at Gop (kJ/m)	493.0	771.3	1391.8
F_x at G_{op} (kN/m)	1790	2225	2790
$F_{\rm v}$ at $G_{\rm op}$ (kN/m)	-2180	-2713	-3380

Table 4: Storage Ring Dipole Parameters.

Parameter	Block design	Shell design
B _{max} coil at 4.5K (T)	13.37	13.13
B _{max} at 4.5 K (T)	11.24	11.24
$B_{op}(T)$	10.0	10.0
Inductance at B _{op} (mH/m)	6.72	9.52
Stored energy at B _{op} (kJ/m)	1280	1100
F_x at B_{op} (kN/m)	4084	3990
F_x at B_{op} (kN/m)	-2216	-1870

Table 8: IR Dipole Parameters.

Parameter	Value	
Aperture (mm)	160	
B _{max} in coil at 4.5 K (T)	13.03	
B _{max} in aperture at 4.5 K (T)	9.82	
$B_{op}(T)$	8.0	
Inductance at B _{op} (mH/m)	15.89	
Stored energy at Bop (kJ/m)	1558	
F_x at B_{op} (kN/m)	3960	
F_x at B_{op} (kN/m)	-1650	

HTS Helical Solenoid Model

- Due to the high cost of the HTS conductor as well as the complicated magnet geometry, the model will be scaled down.
- \cdot Model is limited in the axial size to 2-6 rings and coil thickness to 7.6 mm.
- Model will address the building issues such as splices (inner and outer), winding, insulation, and mechanical supports.

Model winding in progress now

Published IPAC10 MOPEB054

R&D Areas towards 50 T Solenoids

1. HTS Conductor R&D

- Wires Studies of J_{eng} as a function of B, T, angle, and bending, longitudinal and transverse strains.
- BSCCO-2212 Rutherford-type Cables Major challenges are J_c, stringent reaction in O₂, powder leaks, strain sensitivity.
- YBCO Roebel Cables Very high parallel J_c, very strong. Present challenges are anisotropy and J_c homogeneity.

2. Magnet design studies

 Analytical Study of Stress State in HTS Solenoids – Stress distribution in a solenoid was studied for various constraint configurations, max. stresses were produced as a function of coil selffield, and results compared with FEM.

<u>Main results:</u> A 40 T solenoid produces 900 MPa + in the coil itself, a pre-load decreases somewhat the max. hoop stress of the solenoid, but increases much more that on the outer skin.

Co-wound and impregnated YBCO coil represented by a mesomechanic FEM model

<u>Main results</u>: Anisotropy does not sensibly change the stress in the coil package, but dramatically increase that in the outer skin.

3. Coil Technology

- Winding method and tooling.
- Impregnation techniques.
- Splicing procedures.
- R&D on thermally conductive insulation.

4. Coil Test

• Provide feedback to Coil Technology. Test pancake assemblies in 14 T/ 77 mm bore existing magnet and in 10 T/ 147 mm bore upcoming (August 2010) magnet.

Winding Method and Tooling

Co-Winding Tooling for YBCO and Insulating Tape

19 mm/62 mm Copper&Kapton practice Double Pancake Coil

Summary of Double pancake 2G YBCO coils tested in 14 T, 77 mm bore magnet

Coil ID	Conductor	ID/OD	Coil Length (m)	Impregnation	Test Setup	SSL	Notes
DPY01	SP M3-569 (spool4)	60mm/62mm	2	dry	Individual		Top coil resistive, bottom ok
DPY02	SP M3-569 (spool4)	60mm/62mm	2	dry	Individual		Resistive after first quench in helium
DPY03	SP M3-569 (spool4)	60mm/62mm	2	dry	Individual	SSL(77K,0T)=100% SSL(4.2K,0T)=100%	1000A in Self Field.
DPY04	SP M3-569 (spool4)	60mm/62mm	2	dry	Individual	SSL(77K,0T)=100% SSL(4.2K,12T)=76%	Unsupported joints lc(4.2K,12T) = 570 A Joint degradation.
DPY05	SP M3-569 (spool4)	60mm/62mm	2	CTD101 (whole coil)	Individual		Top pancake showed early quench
DPY06	SP M3-569 (spool4)	60mm/62mm	2	CTD101 (last layer)	Individual		very thick epoxy (3mm) – ok in nitrogen, coil damaged before first test in helium
DPY07	SP M3-565 (spool5)	60mm/62mm	2	CTD101 (last layer)	Individual		Impregnation thickness adjustments (1.5 to 0.5mm). Ic(4.2K,12T) = 400 A
DPY08	SP M3-565 (spool5)	60mm/62mm	2	CTD101 (last layer)	Individual		Replica of DPY07. Damaged during winding.
DPY09	SP M3-565 (spool5)	60mm/62mm	2	CTD101 (last layer)	ITF		High resistive Joint.
DPY10	SP M3-565 (spool5)	60mm/62mm	2	Stycast (last layer)	ITF	SSL(77K,0T)=100% SSL(4.2K,12T)=75%	Ic(14T)=523 A Ic(12T)=558 A Ic(10T)=604 A

Future Plans

The nearest goals are:

- Test HS Model 2
- Design HS Nb3Sn Model 3
- Order Nb3Sn superconductor for Model 3
- Finish fabrication HTS HS and test it
- Continue design studies of MC magnets and HCC
- Continue HTS Solenoids R&D