

Estia Eichten

Physics basics
Initial benchmarks
General Questions

Existing facilities in 2020:

- LHC with luminosity or energy upgrade
-] Options:
 - low energy lepton collider:
 ILC (500 GeV) (upgradable) or
 muon collider Higgs Factory
 - lepton collider in the multi-TeV range:
 CLIC or muon collider
 - hadron collider in hundred TeV range:
 VLHC
- High energy lepton collider likely required for full study of Tevascale physics.

業

A Muon Collider

□ µ⁺µ⁻ Collider:

- Center of Mass energy: 1.5 5 TeV (focus 3 TeV)
- Luminosity > 10³⁴ cm⁻² sec⁻¹ (focus 400 fb⁻¹ per year)

Abridged Parameter List

Machine	1.5-TeV $\mu^+\mu^-$	3.0-TeV $\mu^+\mu^-$	CLIC 3 TeV
$\mathcal{L}_{peak} \; [cm^{-2} \; s^{-1}]$	$7 imes10^{34}$	$8.2 imes10^{34}$	$8 imes 10^{34}$ tot
$\mathcal{L}_{avg} \; [cm^{-2} \; s^{-1}]$	$3.0 imes10^{34}$	$3.5 imes10^{34}$	$3.1\times10^{34}_{99\%}$
$\Delta p/p$ [%]	1	1	0.35
eta^{\star}	0.5 cm	0.5 cm	35 μ m
Turns / lifetime	2000	2400	
Rep. rate [Hz]	65	32	
Mean dipole field	10 T	10 T	
Circumference [m]	2272	3842	33.2 km site
Bunch spacing	0.75 μ s	$1.28~\mu s$	0.67 ns

June 9, 2010

Multi-TeV Muon Collider Basics

5

Fusion Processes

- Large cross sections
- Increase with s.
- Important at multi-Tev energies
- $M_X^2 < s$
- Backgrounds for SUSY processes
- t-channel processes sensitive to angular cu

An Electroweak Boson Collider

Х	R (@ 3 TeV)
Z^0	230
$h^{0}(500)$	25
W^+W^-	19.8
Z^0Z^0	5.8
$h^0(120)$	5.5
$t\overline{t}$	0.6
$h^0 h^0(120)$	0.1

Event Rates
(1000 fb ⁻
$e^+e^- \rightarrow $
$e^+e^- \rightarrow 0$
$e^+e^- \rightarrow 2$
$e^+e^- \rightarrow W$
$e^+e^- \to hZ/h\nu\nu$
$e^+e^- \rightarrow H^+H^-$
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$
$e^+e^- o \tilde{\mu}^+\tilde{\mu}^-$
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ s-C
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ s-C
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ s-C $e^+ \sim$
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ s-C $e^+ \sim$
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ $s-C$ $e^+ \rightarrow$ $e^- \rightarrow$
$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-$ s-C $e^+ \rightarrow$ $e^- \rightarrow$

♦ Evolving from I CLIC $\sqrt{s} \simeq 3$ TeV σ (s-channel) cross σ (t-channel) $\simeq \sigma$ (

6

Physics processes similar CLIC/MC for 3TeV energy

Jets from W, Z decays -> Must resolve W/Z

Many events have large missing energy -> What is impact for SUSY?

No penalty for heavy flavors -> Need excellent b and t tagging

Ayres Freitas, Tao Han, E.E.: A first pass at benchmarks

Final states	Exp. considerations	Theo. considerations
$\ell^+\ell^-, \ell=e,\ \mu,\ \tau$	Ecal, μ -chamber; τ -tagging at HE	Contact interaction
$q \bar{q}, q = u, \ c, \ s, \ b$	Hcal, b -tagging at HE	Contact interaction
$\gamma\gamma$	Ecal	QED
$\gamma + E$	Ecal, missing energy	missing mass/dark matter
$W^+W^- ightarrow q \bar{q}', q \bar{q}'$	Hcal: M_W -reconstruct	New resonances
$W^+W^- ightarrow \ell ar{ u}, q ar{q}'$	E, M_W -reconstruct	New resonances
ZZ ightarrow q ar q, q ar q	Hcal: M_Z -reconstruct	New resonances
$ZZ \to \ell^+ \ell^-, \nu \bar{\nu}$	Ecal; <i>E</i>	New resonances
$t\bar{t} ightarrow bW^+ \ \bar{b}W^+$	E,Hcal, <i>b</i> -tagging, mass reconstruct	New heavy quarks
ZHH	multiple $b\bar{b}$	Higgs self coupling
$W^+W^- \to HH$	multiple $b\bar{b}$	Higgs self coupling
$\nu \bar{\nu} W^+ W^- \rightarrow 4j + E$	Hcal: M_W -reconstruct	WW scattering
$\nu \bar{\nu} Z Z \rightarrow 4j + E$	Hcal: M_Z -reconstruct	WW scattering
$ u \overline{ u} t \overline{t}$	Hcal: m_t -reconstruct	$WW ightarrow tar{t}$
$ ilde{\chi}_i ilde{\chi}_j$	leptons, jets+ E	SUSY
$ ilde{\ell}_i ilde{\ell}_j$	leptons+ <i>E</i>	SUSY
$ ilde q_i ilde q_j$	jets+₽	SUSY

Z'

KK mode

Strong Dynamics

4th Generation, Little Higgs Models

Strong Dynamics

8

SUSY

Muon Collider Physics and Detectors Study Group

June 9, 2010

Should we adopt the ILC benchmarks for a multiTeV lepton collider?

Benchmarks for ILC Physics Study 2009-2010 (1 TeV) from Michael Peskin

- 1. $e^+e^- \rightarrow \nu \overline{\nu} h^0$ at $E_{\rm CM} = 1$ TeV, where h^0 is a Standard Model Higgs boson of mass 200 GeV, in the final states $h^0 \rightarrow b\overline{b}$ and $h^0 \rightarrow \mu^+\mu^-$. The goal is to measure the cross section times branching ratio for these reaction.
- 2. $e^+e^- \rightarrow t\bar{t}h^0$ at $E_{\rm CM} = 1$ TeV, where h^0 is a Standard Model Higgs boson of mass 200 GeV, in the final state $h^0 \rightarrow WW, ZZ$, in the 10 jet mode. The goal is to measure the Higgs boson coupling to $t\bar{t}$.
- 3. $e^+e^- \rightarrow \tau^+\tau^-$ at $E_{\rm CM} = 1$ TeV. The goal is to measure the forward-backward asymmetry and the final-state τ polarization.
- 4. $e^+e^- \rightarrow b\overline{b}, c\overline{c}$ at $E_{\rm CM} = 1$ TeV. The goal is to measure the cross section and the forward-backward asymmetry of each reaction.
- 5. $e^+e^- \rightarrow \nu \overline{\nu} + WW, ZZ$ at $\sqrt{s} = 1$ TeV. The goal is to measure the effective Lagrangian parameters α_4 and α_5 in strongly interacting models of the Higgs sector.
-] If a s-channel resonance is observed at LHC, how do CLIC/MC studies compare?
- What is the best way to determine the SUSY spectrum and couplings at a few TeV lepton collider?
- If the LHC results suggest a new strong dynamics, can we reach the scale?
- What if the LHC finds the SM Higgs (with possibly more scalars)?

Toward Benchmark Processes for 3 TeV Muon Collider:

The SM with h(120) as reference point. Generate samples for 1 ab^{-1} total luminosity.

- $\mu^+\mu^-$ SM: reference process. BSM: contact term sensitivity versus angular cuts.
- (W⁺W⁻, ZZ, ZW⁻μ⁺) +X. Here X is anything not visible in detector (i.e. ν's, particles outside the detectors angular acceptance, ...).
 SM: W/Z resolution in jets. W⁺ → cs̄, Z → bb̄, resolution in WW pair invariant mass.

BSM: new strong dynamics (eg. ρ_T)

- bb
 bi
 + X. SM: resolve h from Z. BSM: Two Higgs doublet model resolve H, A.
 (Use SUSY parameters with m(H) = 400 GeV.)
- $\tilde{\mu}^+\tilde{\mu}^-$ SUSY: Study decays. Find neutralino mass using edge effect

10