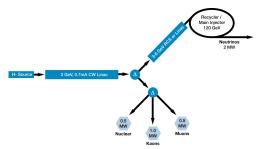
Optimization of 650 MHz 5–cell cavities with β =1.0


Ruslan Momot^{1,2} Supervisor: Vyacheslav Yakovlev²

¹Moscow Institute of Physics and Technology, Moscow, Russia

²Fermilab, Batavia, IL, USA

8/25/2010

Project X concept

Multiexperemental facility. Based on an H^- linear accelerator using superconducting rf technology. Will provide opportunities at the intensity frontier.

CW mode, up to 3 GeV

- ► 0.5 MW muons
- 1.0 MW kaons
- ► 0.5 MW nuclear

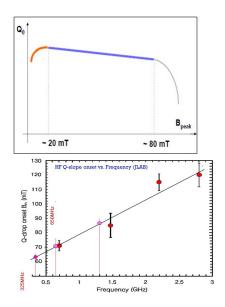
LINAC, pulse mode, $3 \rightarrow 8$ GeV

neutrinos experiments

Cavities for recirculator for future μ -collider

Suggestion to use 3-8 GeV LINAC for recirculator for μ -collider

- \blacktriangleright lower frequency is needed for $\mu\text{-collider} \rightarrow$ 650 MHz cavities were chosen
- less radiation


What was suggested?

5-cell cavities with f=650 MHz and β =1.0

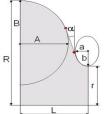
Limitations

- field flatness
- field emission
- high-field Q-slope
- mechanical stability
- surface processing

Working assumptions

Field enhancement factors (FEF) – as small as possible \rightarrow higher gradient

[
		limitations
surface fields		high field Q-slope
chosen		field-emission
$B_{pk} < 70 \mathrm{mT}$		
$E_{pk} < 40 \mathrm{MV/m}$		
coupling coefficient	smaller k	field flatness
chosen	\downarrow	
$\geq 0.75\%$	smaller FEF	
aperture	smaller aperture	beam losses
chosen	\downarrow	field flatness
pprox 110 mm	smaller FEF	mechanical stability
cavity wall slope	smaller slope	mechanical stability
chosen	↓ ↓	surface processing
7°	smaller FEF	


Optimization of 650 MHz 5-cell cavities with β =1.0

Understanding of the optimization process

3 steps

- ► Regular cell optimization Variying geometrical parameters to get as small as possible FEF $(FEF_E = \frac{E_{peak}}{E_{acc}}, FEF_H = \frac{H_{peak}}{E_{acc}})$
- End cell optimization
 FEF should not be greater then in regular cell. Coincidence of the geometric parameters in the places of connection.
- Complete 5-cell cavity optimization. Using parameters of inner and end cells. Field should not be locked in the inner cells (no trapped modes).

Optimized cells' parameters

R	199.786 mm	
п	199.700 mm	ſ
r	55 mm	ł
Α	92.5 mm	$\left \right $
В	84 mm	$\left \right $
а	20 mm	ł
b	28 mm	$\left \right $
L	115.378 mm	$\left \right $
		L

right cell

Right

199.786 mm

55 mm

85 mm

60 mm

15 mm

50 mm

114.868 mm

Left

199.786 mm

55 mm

72.5 mm

70 mm

18 mm

28 mm

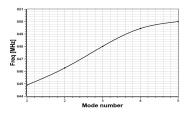
R

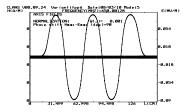
r

А

В

а


b


	97.053 mm	
er cell	Table: Left and	ł
	er cell	L 97.053 mm

Complete cell

Parameter	Magnitude	Units
Transit time factor	0.324	
Coupling coefficient	0.867	%
R/Q	700	Ohm
E_{peak}/E_{acc}	1.97	
H _{peak} /E _{acc}	3.65	mT/(MV/m)
Wall angle	4.5	degree
Beam pipe dia	0.11	m
Active length	1.135	m

Table: RF parameters for fundamental mode

Optimization of 650 MHz 5-cell cavities with β =1.0

Study of higher order modes

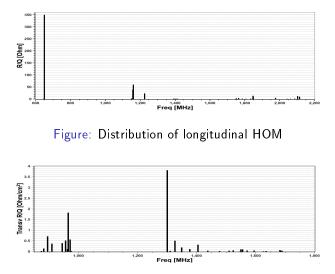


Figure: Distribution of transverse HOM

Conclusions

- 650 MHz 5-cell beta 1.0 cavity optimized
 - Inner cell geometry optimized
 - End (left, right) cell geometry optimized
- Longitudinal and transverse higher order modes are studied
 - All trapped modes are eliminated
- Design limitations are disscussed