# LyRICS - Li Rod Ionization Cooling Simulation

#### T.V. Zolkin

The University of Chicago

3 September

## 0. Introduction

#### Why We need muon collider?

- The LEP the largest  $e^+e^-$  collider ever constructed, has been the practical limit for cyclic electron-positron colliders because of SR.
- The LHC is currently the energy frontier facility<sup>a</sup>, but proton, as any hadron, is not a fundamental pointlike particle, but a conglomerate of fundamental particles of quark-gluon nature.

<sup>a</sup>It will provide high luminosity proton-proton collisions with a maximum center-of-mass energy of up to 14 TeV.

#### Further Posibilities:

- Muon Collider
- Linear  $e^+e^-$  Collider

### MC vs. ILC

#### Technical advantages

- MC needs less area than ILC.
- MC can be used as a neutrino factory.
- Up to 1000 bunch collisions prior to the muon decay.

#### Physics advantages

- High-density electron (positron) bunches produce very high focusing radial electric and azimuthal magnetic fields, so primary particles emit too many photons and at center-of-mass energies of 1 TeV the eective energy spread reaches several tens percent.
- It is very important to study identity of μ<sup>+</sup>μ<sup>-</sup> interaction to e<sup>+</sup>e<sup>-</sup> one from fundamental point of view.

0. Introduction

# Ionization Cooling with Lithium Rod Usage



#### It is easy to show, that:

The equilibrium angular spread of a particle moving through matter does not depend on the properties of the focusing (i.e. does not depend on the  $\beta$ -function value):

$$\min(\varepsilon_{tr}) \rightarrow \min(\theta_{x,y}^2 \beta_{x,y}) \rightarrow \theta_{x,y}^2 \min(\beta_{x,y}) \rightarrow \max$$
 focusing

# 1. Final Cooling

It is very essential to use LiRods for very final part of cooling This is only 4-D Cooling, but full 6-D emittance reduction observed.



# 1.1 Transversal Motion

#### Transversal motion determined by two processes concurrence:

- "Diffusion" Coulomb scattering
- "Damping" due to Ionization Friction Force



# 1.2 Longitudinal Motion

Longitudinal heating determined by two processes concurrence:

- "Diffusion" Ionization Losses Fluctuation
- "Anti-Damping" negative derivative of Ionization Friction Force







• 200 KGauss:  $\epsilon_{Full} = 3 \times 10^{-5}$ 

• 150 KGauss: 
$$\epsilon_{Full} = 5 imes 10^{-5}$$

• 100 KGauss: 
$$\epsilon_{Full} = 10 \times 10^{-5}$$

# 2. How we can obtain 6-D Cooling or enlrge 4-D Cooling

#### There is 3 possibility:

- Decrement redistribution
- Emittance redistribution
- Emittance exchange

## 2.1 LiRod with decrement redistibution?



## 2.2 LiRod with emittance redistibution?



## 2.2 LiRod with emittance redistibution?



T.V. Zolkin (The University of Chicago) LyRICS - Li Rod Ionization Cooling Simulatio

3 September 12 / 16

(日) (同) (三) (三)

### 2.3 LiRod with emittance exchange?



3

#### Idea of emittance exchange usage for LiRod cooling scheme



< A > < 3

# Simulation of emittance exchange usage for LiRod cooling scheme



< A > < 3

# Simulation of emittance exchange usage for LiRod cooling scheme



T.V. Zolkin (The University of Chicago) LyRICS - Li Rod Ionization Cooling Simulatio

∃ →

Image: A match a ma