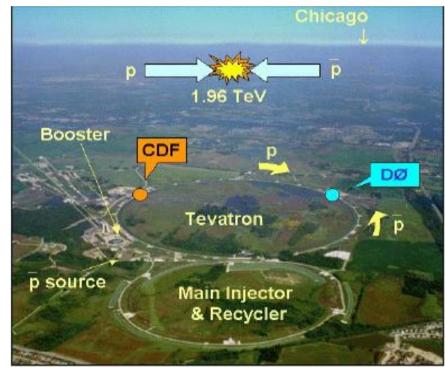
Open Science Grid Use By DZero

OSG Workshop, São Paulo December 10, 2010

Joel Snow Langston University

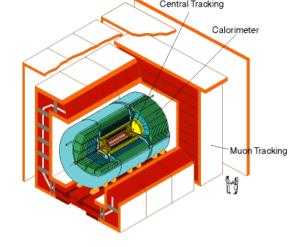

Outline

- What is DZero?
- Why does DZero use OSG?
- Interoperability with OSG and LCG
- How does DZero use OSG?
- The Monte Carlo use case
 - MC Production System
 - MC Production Results
- Summary

What is the DZero Experiment?

- Particle physics experiment
 - At the Tevatron Accelerator at Fermilab in Batavia, IL, USA
 - Collides 1 Tev protons with 1 Tev antiprotons
- Global enterprise
 - Collaborators are disbursed over 4 continents

DZero Experiment


- Detector 30'x30'x50', 5000 tons
- ~1,000,000 data channels

- Central Tracking Calorimeter Muon Tracking
- Inspects 1.7 million p anti-p collisions/sec
- Records ~100 events/sec
- Data flow 20MB/sec.
- 300,000 GB of data recorded/year
- 7.7 billion events collected in Run II to date
- Took data 1992-1996, upgrade 1996-2001, running nearly continuously since

DZero Experiment

- Global enterprise
 - 491 physicists
 - 19 countries on 4 continents
 - 86 institutions (37 in U.S.)
- 133 Run I and 210 Run II publications to date
- Will run into 2011, perhaps longer
- Expect dataset to double if extended to 2014
- Challenging as resources migrate to LHC experiments

Scenario

- Simulation data (MC) crucial to physics analysis
- Tevatron luminosity and hence raw data volume is at record levels
- Challenge for analysts and production
- Personnel & computing resources migrating to LHC experiments
- DZero coping strategy
 - Increase automation
 - Leverage resources and support

DZero Evolution

- Mature experiment, but nimble
 - history of adopting innovative technologies
 - distributed data handling SAM
 - early adopter of the grid for production SAMGrid
 - significant investment in these technologies
- Grid technology allows opportunistic usage
 - DZero can mix "traditional" dedicated and opportunistic resources
- Grid interoperability
 - Leverages resources and support, reduces personnel needs per CPU hour

December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo

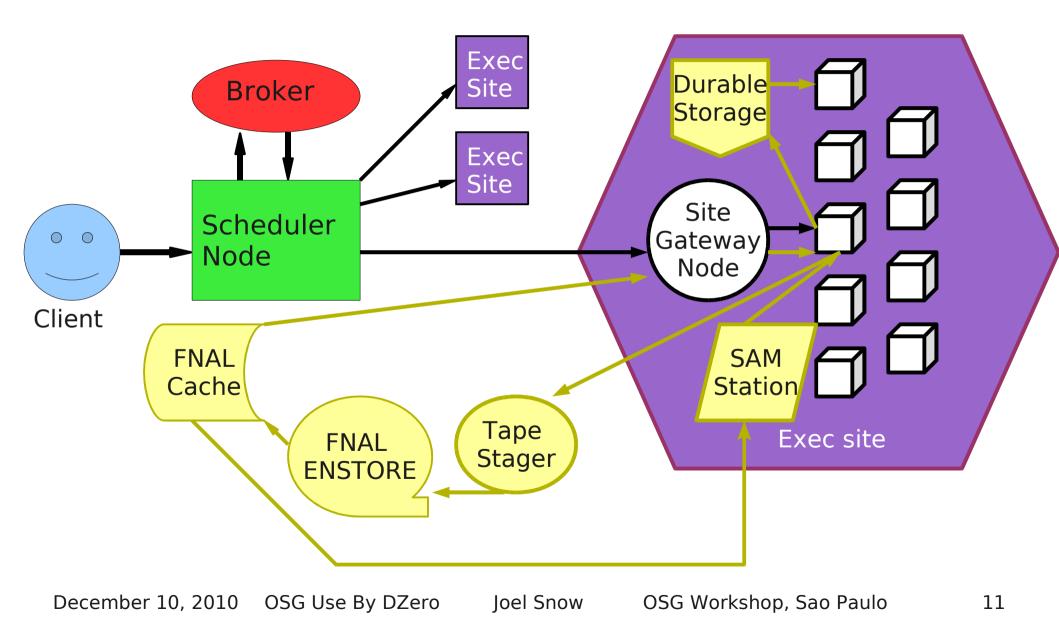
Sequential data Access via Metadata

- Fermilab system first used by DZero
- SAM distributed data handling system predates the grid
- Set of servers working together to store and retrieve files and metadata
- Permanent storage and local disk caches
- Database tracks location, metadata of files, job processing history
- Delivers files to jobs (using GridFTP over WAN), provides job submission capabilities

SAMGrid

- Fermilab developed grid first used by DZero for global MC production in 2004
- SAMGrid = SAM + Job and Information Management (JIM) components
- Provides the user with transparent remote job submission, data processing and status monitoring.
- VDT based (Globus + Condor)
- Logically consists of
 - Multiple execution sites
 - Resource selector
 - Multiple Job Submission (Scheduler) sites

Multiple Clients (User Interface) to Submission site.
December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo


SAMGrid Operation

- User submits job request to queuing node (based on Condor scheduler) via remote client (based on Condor client commands).
- Jobs are matched and submitted to execution sites (based on on Globus gatekeeper/jobmanager).
- At exec site job requests are split into multiple job instances (for MC 250 events/job)
- Job instances submitted to a local batch system or to another grid.
- Exec site triggers data delivery (binary, control, input data) and controls data traffic shaping.

December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo

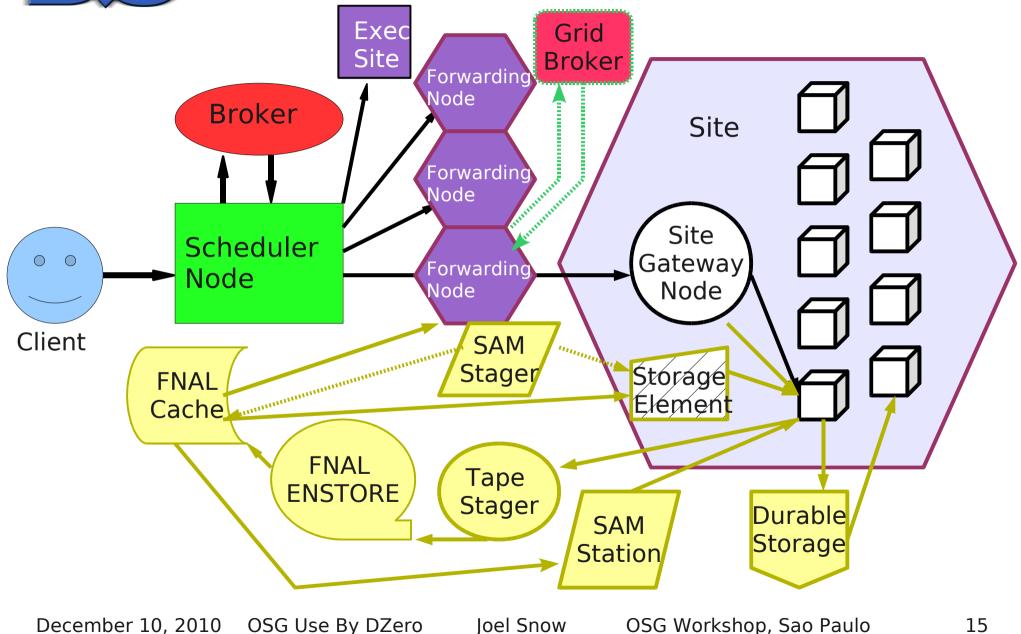
SAMGrid Components

SAMGrid Reflections

- Enabled Dzero's use of opportunistic computing cycles
- Very productive for Monte Carlo
- Deployment proved limited in scope
 - Sites require operational manpower and expert support
 - People power and lab support migrating to LHC experiments
- Still in use, but more computing needed!

Why Does DZero Use The OSG?

- Dzero has a huge amount of data
- Dzero has limited computing and human resources
- SAMGrid was not enough
- Other grids like OSG and LCG have resources available
 - provides opportunistic job slots 🖌
 - comes with support \checkmark



SAMGrid Interoperability

- As Open Science Grid (OSG) and LHC Computing Grid (LCG) became operational it was desirable to leverage these resources for DZero
- FNAL and DZero developed and deployed SAMGrid interoperability with both LCG and OSG resources
- Execution site acts as a Forwarding node
 - packages SAMGrid jobs for OSG/LCG job submission

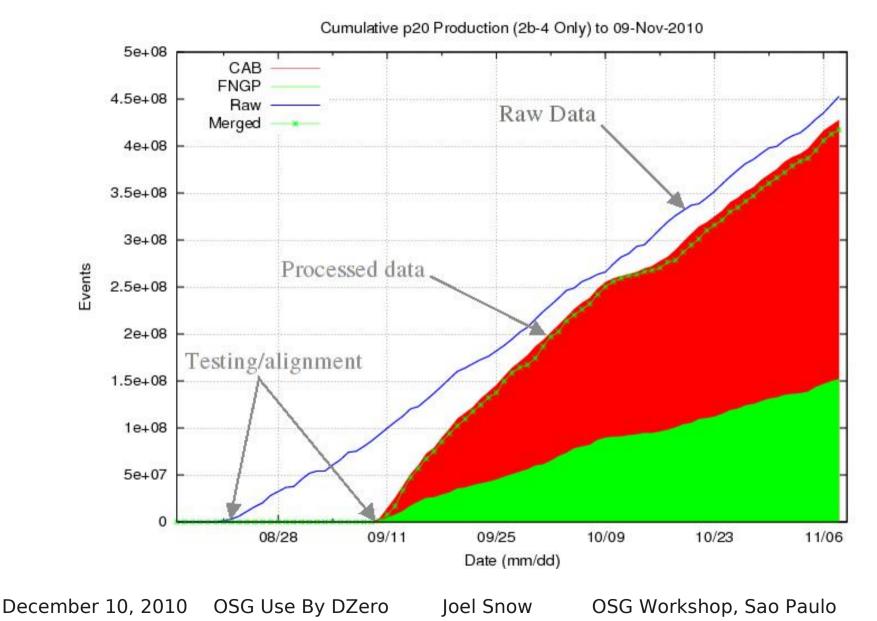
SAMGrid OSG/LCG

g

How Does DZero Use The OSG?

- All raw data is first reconstructed using OSG facilities
 - Only done at OSG sites at Fermilab
 - Jobs submitted using SAMGrid framework
- A large fraction of simulation (Monte Carlo) is done using OSG facilities
 - Jobs submitted using SAMGrid framework
- A small number of specialized physics analyses use OSG facilities
 - Not submitted using the SAMGrid framework
- LCG jobs are submitted through an OSG glidein factory at Fermilab

December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo


How Does DZero Use The OSG?

Dzero VO Gratia statistics for November 2010

	# Jobs \	Wall Time (h)	Success %	Sites
Data Production	80,290	1,161,569.8	91.6	2
MC Production	242,009	1,472,122.7	74.7	25
Physics Analyses	18	144.5	100.0	1
Total	322,317	2,633,837.0	78.9	25

2,633,837 hours = 300 years!

Monte Carlo Production on the OSG

- Request system
- MC Applications
- Job flow
- Data flow
- Automated grid job submission
- Monitoring
- Production results

Production System

- MC production gets work from the SAM **Request System**
 - Physics groups' MC requests are parametrized and prioritized

MC Requests 1

Updated Sat Nov 29 11:00:24 CST 2008

MC Request Summary

Group	Weight	Request Total	Processed Events	Weighted Events	Next Job
algo	1	2000000	1000000	1000000	0
bphysics	1	25400000	17900000	17900000	0
dzero	4	737789248	554765470	138691367	0
higgs	1	218478000	190253000	190253000	94799
jes	4	35400001	27000000	6750000	0
np	1	58849999	41385001	41385001	0
qcd	1	6700000	6600000	6600000	0
test	1	2198001	1641000	1641000	0
top	1	221785000	162160000	162160000	94834
wz	1	11580000	10415000	10415000	0

The Next Request to be processed is Request ID = 94834

Updated Sat Nov 29 11:00:24 CST 2008

Request ID	Status	Group	User	Priority	# Events	Description	Cardfile Vers. Dir. Prod. Decay
<u>95054</u>	approved	top	mackin	5	100000		pythia v01-01-37 top t+t incl_BR.n
<u>95053</u>	approved	top	mackin	5	200000		pythia v01-01-37 top t+t incl_BR.n
<u>95052</u>	approved	top	mackin	5	200000		pythia v01-01-37 top t+t incl_BR.n
<u>95051</u>	approved	top	mackin	5	100000		pythia v01-01-37 top t+t incl_BR.n
<u>95050</u>	approved	top	mackin	5	200000		pythia v01-01-37 top t+t incl_BR.n
<u>95049</u>	approved	top	mackin	5	200000		pythia v01-01-37 top t+t incl_BR.n

December 10, 2010 OSG Use By DZero

Joel Snow

OSG Workshop, Sao Paulo

Production System

Request in the form of a Python dictionary

Request 94775({ 'requestId' : 94775L. 'requestType' : 'simulation', 'requestStatus' : 'new', 'archive' : SamBoolean('FALSE'), 'comments' : 'pythia hl+b->bb+b m hl=100 gev'. 'group' : 'higgs', 'numberOfEvents' : 150000L, 'priority' : 5L, 'statusHistory' : RequestStatusHistory([RequestStatusHistoryEntry({ 'byWhom' : UserIdentifier(userName='mackin'), 'date' : SamTime(1227540201.0), 'requestStatus' : 'new', })]), 'userIdentifier' : UserIdentifier(userName='mackin'), 'params' : Params({ 'global' : CaseInsensitiveDictionary({ 'datatier' : 'reconstructed'. 'description' : 'Pythia hl+b->bb+b m hl=100 GeV', 'groupname' : 'higgs', 'phase' : 'mcp20'. 'producedforname' : 'mackin', 'requestid' : '94775', 'runtype' : 'Monte Carlo', 'stream' : 'notstreamed', }),

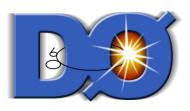
'digitized' : CaseInsensitiveDictionary({ 'calorimeternoise' : 'off', 'd0release' : 'p20.09.03', 'frameworkrcpname' : 'runD0Sim noCalNoise run2b.rcp', 'mergeminbias' : 'on', 'minbidataset' : 'zerob p20 09 03 RunllbMC online 0sup only sample sept06 shutdown2007 warmcellfi x'. 'minbiopt' : 'Fixed', 'numminbi' : '1.0'. }), 'generated' : CaseInsensitiveDictionary({ 'cardfiledir' : 'higgs', 'cardfileversion' : 'v01-01-00', 'collisionenergy' : '1960.0', 'd0release' : 'p20.09.03', 'decay' : '3b sm.n', 'etagt' : '-5.0', 'etalt' : '5.0', 'generator' : 'pythia', 'higgslmass' : '100.0', 'pdflibfunc' : 'LHPDFCTEQ6L1', 'production' : 'hl+b', 'ptgt' : '15.0', 'ptlt' : '-1.0', 'topmass' : '170.0', 'useevtgen' : 'on', }), 'reconstructed' : CaseInsensitiveDictionary({ 'appfamily' : 'reconstruction', 'appname' : 'd0reco', 'appversion' : 'p20.09.03', 'd0release' : 'p20.09.03', 'frameworkrcpname' : 'runD0reco mc.rcp', }), 'simulated' : CaseInsensitiveDictionary({ 'd0release' : 'p20.09.03', 'geometry' : 'plate-run2b', 'keepparticlecalenergy' : 'off',

Joel Snow

}), }),

MC Applications

- Typical request has 4 phases 1 appl. each
 - Generator physics of interest is created
 - Simulator propagation of particles of interest through the detector
 - Digitizer Put simulated data in the form of raw data and overlay with generic background
 - Reconstruction Reconstruct with first pass data analysis code
- Metadata of all phases saved in SAM
 - Typically only the output of the last phase is saved on tape at FNAL


December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo

MC Grid Job Flow

- SAMGrid jobs are broken into 250 event chunks at the Forwarding node for submission to the Condor_g system
 - Execution time trade-off to maximize usable sites
- Output file size too small for efficient tape storage (20-30MB)
 - Merged in separate grid job
- The 10k event merged files (1GB) are stored on tape via SAM and unmerged files are deleted from durable storage.

23

MC Production Grid Job Data Flow

- Bootstrap executable from Forwarding node 3MB
- Initial environment/utility files from Forwrding node - 20MB
- Applications and execution environment from SAM cache 800MB
- Optional input data file, overlay files from SAM cache 200MB-1GB + 300-500MB
- For OSG or LCG jobs no VO specific pre-installed software required at the job site
- Output data file stored in "durable location" until merged

December 10, 2010 OSG Use By DZero Joel Snow OSG Workshop, Sao Paulo

MC Merge Grid Job Data Flow

- Bootstrap executable from Forwarding node -3MB
- Initial environment/utility files from Forwarding node - 20MB
- Applications and execution environment from SAM cache - 800MB
- Files to be merged from durable location -1GB
- Output file stored on tape via SAM 1GB

Data Transport Issues

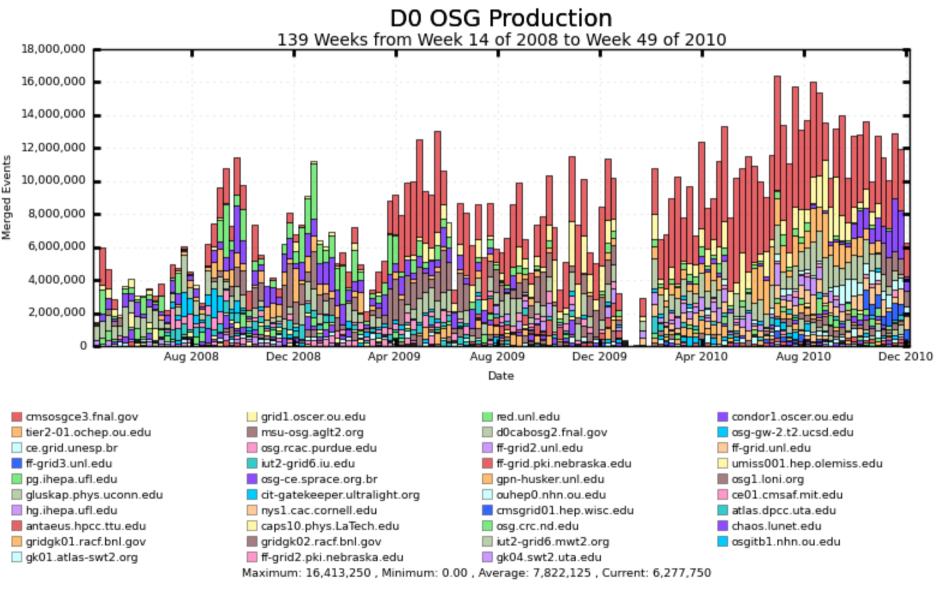
- OSG jobs use WAN transport to workers from remote SAM caches
 - Pro: No VO specific software pre-installed at job site – great site selection flexibility
 - Con: WAN transport less reliable than LAN
 - Less than optimum job efficiencies
- Use of local OSG SE's as SAM caches mitigates problem
 - 9 OSG SE's in use; space managed by SAM
 - significant improvement in efficiency seen
 - Dzero first to use OSG opportunistic storage

Automatic Monte Carlo Request Processing

- From approved request to final data storage
- Easy to use minimizes manpower needs
- Site independent
 - deploy for any grid site (SAMGrid, OSG, LCG)
 - capable of managing many sites
- Handle recovery of common failures
- Integrated with existing MC request priority protocol

27

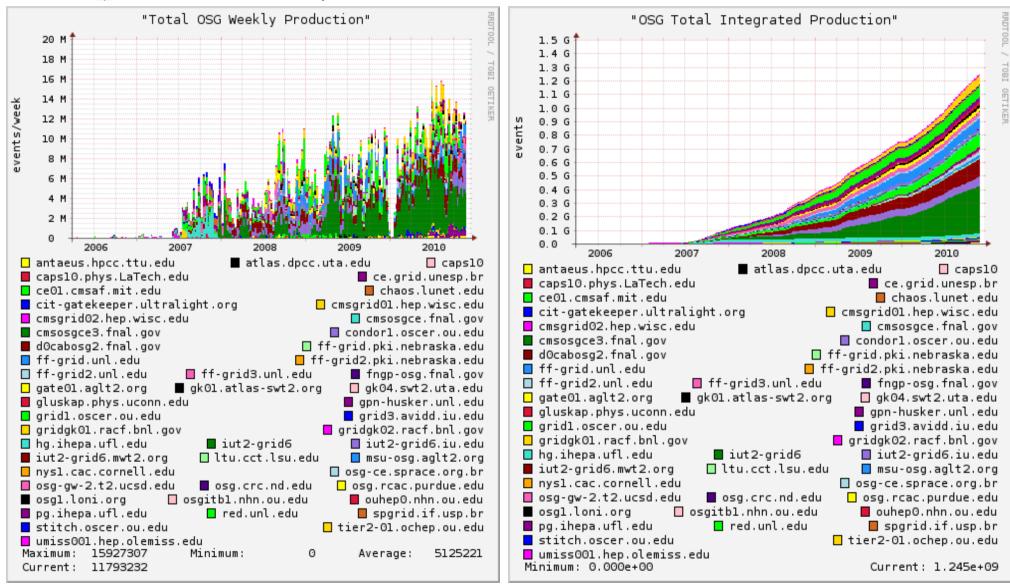
Auto MC System Components


- SAM Client for DB queries
- JIM for job submission and monitoring
- Daemon
 - periodically awakens to do work
- Local database
 - request processing data and history
- Grid credentials

Job Monitoring and Status

- OSG tools
 - MyOSG (http://myosg.grid.iu.edu)
 - RSV, GIP, Gratia, ...
- Condor tools
- SAM database
 - Request status, some job info, and file status
- SAMGrid databases
 - Jobs instrumented to report history
- All are needed

MC OSG Production Results

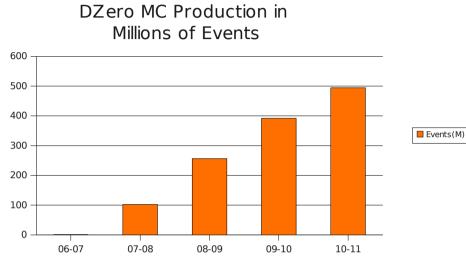

December 10, 2010 OSG Use By DZero

Joel Snow

OSG Workshop, Sao Paulo

MC OSG Production Results

April 1, 2006 - December 1, 2010



December 10, 2010 OSG Use By DZero

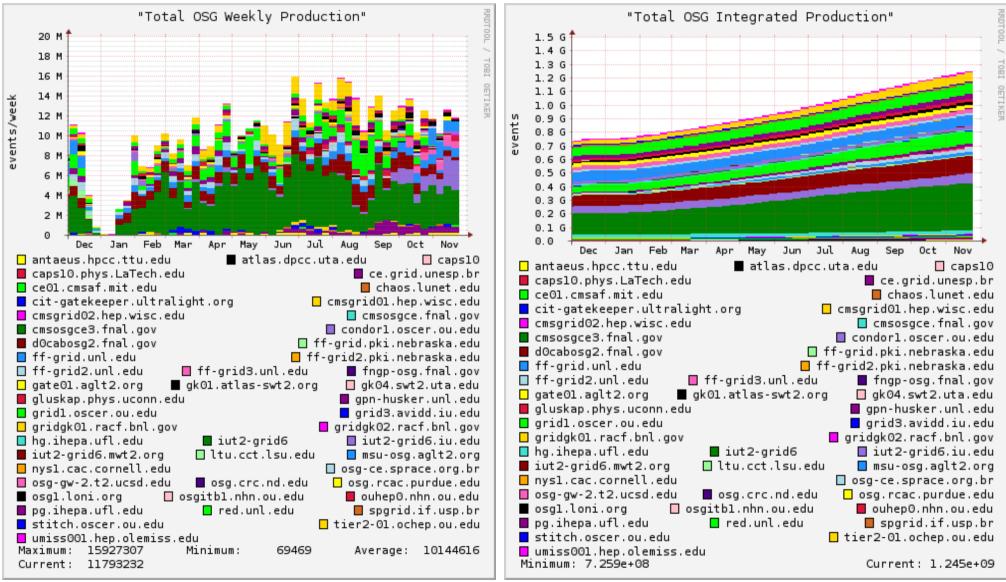
Cumulative since April 1, 2006 Joel Snow OSG Workshop, Sao Paulo

Production Results Last 5 Years

DZero OSG MC Production in Millions of Events

Period	Events (M)
2010/04/01-2010/12/01	494.5
2009/04/01-2010/04/01	391.9
2008/04/01-2009/04/01	256.4
2007/04/01-2008/04/01	102.3
2006/04/01-2007/04/01	1.1

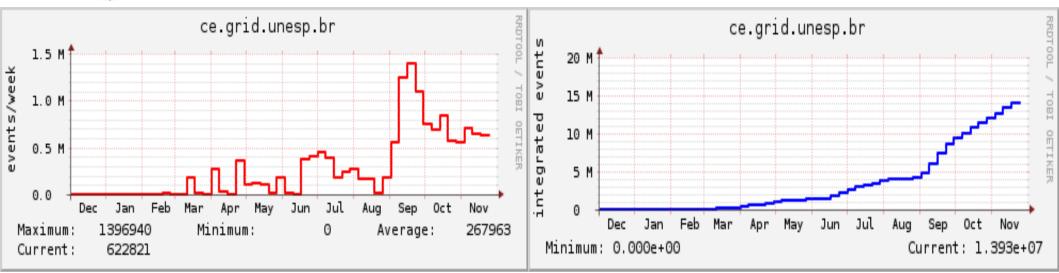
DZero MC Production in Terabytes of Data

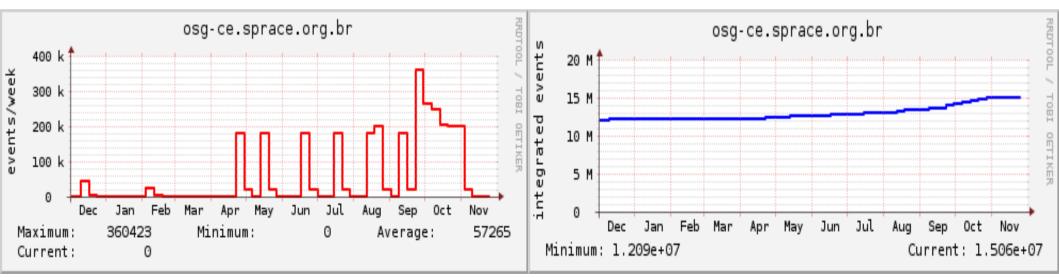


		Per	iod		Da	ta (TB)
	2010	/04/01-2	2010/1	2/01		40.8
3)	2009	/04/01-2	2010/0	4/01		34.9
	2008	/04/01-2	2009/0	4/01		24.4
	2007	/04/01-2	2008/0	4/01		12.2
	2006	/04/01-2	2007/0	4/01		0.2
Joel S	Snow	OSC	G Work	shop,	Sao P	aulo

MC OSG Production Results

Dec. 1, 2009 - Dec. 1, 2010




December 10, 2010 OSG Use By DZero

Cumulative since April 1, 2006 Joel Snow OSG Workshop, Sao Paulo

MC OSG Production Results

Dec. 1, 2009 – Dec. 1, 2010

Cumulative since April 1, 2006

December 10, 2010 OSG Use By DZero

g

Joel Snow

OSG Workshop, Sao Paulo

Summary

is very dependent on OSG technology, infrastructure, and support

- Data production, MC production, Analysis
- MC production
 - Almost all opportunistic batch slots
 - Heavy user of opportunistic storage
- Leveraging OSG resources has proven a great success for Dzero
 - Data production able to keep up with record Tevatron luminosity and the resulting explosion of data
 - MC production able to provide all needed simulation data for physics analyses