

Final Cooling in 30-50 T Solenoids

R. B. Palmer, Rick Fernow (BNL)

Friday

Introduction

9/10/10

- Example with 40 T
- Simulated performances for 30, 40, and 50 T
- Performance vs. B
- More details of 40 T solution
- System Transmission
- Other Methods
- Tasks
- Conclusion

• IN: ϵ_{\perp} =400 μ m ϵ_{\parallel} =1.1 mm Goal: ϵ_{\perp} =25 μ m ϵ_{\parallel} =72 mm

• Transmission goal: 70%

- At lower energies
 - Focusing stronger & Energy loss greater
- Cooling to any emittance, with any B, if energy is low enough!

Energy loss

- \bullet But the lower the energy, the steeper the slope of dE/dx vs. energy
- \bullet And the faster dE/E rises: giving worse longitudinal heating

One stage

- \bullet Cooling limited to \approx 20% before dE/dx \rightarrow excessive
- \bullet Drift needed to phase rotate to new longer bunch and ok dE/dx
- Field must be reversed to avoid angular momentum build up

Design & Optimization

- For each stage, with starting emittances from last stage, choose
 - Initial energy
 - Initial energy spread
 - $\ {\rm Hydrogen} \ {\rm length}$
- Run ICOOL only for length in hydrogen with fixed field
- Assume no dilution from match & re-acceleration (justified later)
- Calculate decay in length for phase rotation & acceleration
- Optimize for:
 - $-\,{\sf A}$ minimum slope of $d\epsilon_{\parallel}/d\epsilon_{\perp}$ to achieve or beat goal emittances
 - A reasonable $\Delta \epsilon_{\perp}/\epsilon_{\perp}$ to keep down number of stages
 - $\mbox{ Moderate particle loss for given emittance reduction}$

Example solution

13 stage, all magnets at 40 T

- \bullet Each stage cools transverse emittances by $\approx 20\%$
- Longitudinal emittance increases by a similar amount
- A reasonable dp/p requires growing bunch lengths

Simulated performances for 30, 40, & 50 T 40 T (mag e) 1.5 40-50 T small steps (mag g) 30 T (mag g)Slopes of $d\epsilon_\parallel/d\epsilon_\perp$ 1.00.5 0.0 56 89 10.0 10^{2} emit (pi mm mrad)

- Worse at start from amplitude effect on short bunches
- Worse at end from long emittance growth at low energies
- Note: interpolation between solutions

- 40 T solution meets emittance goals
- 50 T solution provides greater margin and/or improved performance
- 30 T does not meet emittance requirements

Final ϵ_{\perp} at specified ϵ_{\parallel} vs. Max B (T)

- Counter-intuitive result
- But situation is complicated
- And optimization not yet automated

Luminosity Consequences

• For fixed β_{\perp} and N_{μ}

$$- \mathcal{L} \propto 1/\epsilon_{\perp} \propto B^{3/2} \qquad \frac{\mathcal{L}(30)}{\mathcal{L}(40)} = \left(\frac{30}{40}\right)^{3/2} = 0.64$$

 $-\operatorname{But}$ this requires larger gradient IP quads

 \bullet For fixed IP quad gradients & locations, and fixed N_{μ}

$$- \beta_{\perp} \propto \epsilon_{\perp}$$

- so $\mathcal{L} \propto 1/\epsilon_{\perp}^{2}$
- $\mathcal{L} \propto B^{3}$ $\frac{\mathcal{L}(30)}{\mathcal{L}(40)} = \left(\frac{30}{40}\right)^{3} = 0.42$

• But these scaling relations are very aapproximate and if N_{μ} can be increased, the losses are less

Some Details of 40 T Solution

- \bullet Hydrogen and magnet lengths fall from 75 cm to \approx 4 cm
- Bunch rms length rises from 5 cm to 300 cm
- \bullet RF frequency falls from \approx 300 MHz to \approx 4 MHz

Assumed gradients

• Only induction linacs give required gradients for long bunches

More Details of 40 T solution

• Beam rms radii fall from 2 cm to pprox 6 mm

 \bullet Beam energy falls from 70 MeV (135 MeV/c) to \approx 6 MeV

Simulated transmission

- Muon losses from simulation
- Decay calculated from required drift and acceleration

- Losses dominated by decay in phase rotation and acceleration
- Losses a little above goal: 65% vs. goal of 70%
- More than made up by other systems (discussed later)

Example of matching & re-acceleration

- This example is from the 50 T sequence
- It includes the final and penultimate stages

Detail of 50 T matching & field flip

- \bullet Adiabatic match from 50 T \rightarrow 1.25 T
- Rapid field flip with beta matching

• Real solution would use single modified pulse shape

Phase space evolution

Emitance evolution

- In match and re-acceleration:
 - 0.01% ϵ_{\perp} dilution 0.5% ϵ_{\parallel} dilution 7.3% loss
- Negligible dilutions justify design assumption above

System Transmission

Example from recent
compilation with
8 GeV protons
and MARS 15:

	transmission	cumulative	mu/p
After rotation		1.0	0.219
Best 21 bunches	0.7	0.7	0.153
Charge separation	0.9	0.63	0.138
6D Cooling before merge	0.47	0.30	0.065
Merge	0.88	0.26	0.057
6D Cooling after merge	0.48	0.12	0.027
40 T Cooling	0.65	0.08	0.018
Acceleration	0.7	0.057	0.0125

- 40 T cooling has higher losses than goal
- But made up by improved production at 8 GeV
- \bullet For 2 10^{12} muons requires 1.6 10^{14} 8 GeV protons/bunch
- Power at 15 Hz: 3.1 MW (cf 4 MW baseline)
- We still have a margin

Other Final Cooling schemes to study

- The object is to achieve lower transverse emittances
 - $-\operatorname{to}$ allow lower muons/bunch at higher rep. rate
 - easier p driver, less collective effects,
 - less detector background
- Reverse emittance exchange in wedges Could be done inside 40 T solenoids Not yet simulated
- Emittance exchange at higher energy using septa Not yet simulated
- Use of either requires more efficient earlier cooling

Septum emittance exchange

- Should be done also in orthogonal direction or use septa in x and y followed by 4 channels
- Can be done at any energy
- Will be less efficient than 40-50 T cooling for ϵ_{\perp} > 25 μ m but, in principle, will work for any emittance

Reverse emittance exchange in wedges

- Still requires low beta from strong solenoid
- But lowers emittance faster, is less affected by scattering
- Can exchange to lower emittances

TASKS

- Include hydrogen windows
- Automate optimization of multi-stage systems to reduce possible systematic errors
- Simulate full sequence of stages at chosen field
- Study space charge and loading
- Confirm simulations using G4-beamline
- Integrate into full capture-cool-acceleration scheme
 - Design late 6D cooling to match required 135 $\rm MeV/c$ mom.
 - Design initial acceleration of 6 MeV, very long, output bunches
- Demonstrate 40 T solenoid (discussed in later talks)
- Study schemes for lower emittances

Conclusion

- Sequence of 40 T cooling stages appears to meet emittance goals
 - Sequence of 50 T solenoids would give more margin, lower emittance and somewhat improved luminosity
 - -30 T solution would cause significant performance loss (factor 0.4 0.6)
- Lower transmission (65% vs. 70%) of 40T solution appears more than compensated by gains elsewhere
- Simulation of matching and re-acceleration between last stages showed negligible dilution and acceptable transmission
- Two methods that might get to lower transverse emittances need study But they probably require improvements in 6D cooling
- There is much work still to be done