APPENDIX A

Office, Technical, and Education Building

Design

- Basis of Design
- Conceptual Drawings

CDR -	1	Site Plan
CDR -	2	Landscape Plan
CDR -	3	1 st Floor Plan
CDR -	4	2 nd & 3 rd Floor Plan
CDR -	5	Elevations
CDR -	6	Sections
CDR -	7	Sections
CDR -	8	Enlarged Plans
CDR -	9	Enlarged Elevations
CDR -	10	Wall Sections
CDR -	11	Wall Sections
CDR -	12	Wall Sections
CDR -	13	Wall Sections
CDR -	14	Details
CDR -	15	Details
CDR -	16	Lunchroom Perspectives
CDR -	17	Office Layout – Option A
CDR -	18	Office Layout – Option B
CDR -	19	Office Layout – Option C
CDR -	20	Office Layout – Option D

CDR -	21	Structural Caisson Plan
CDR -	22	1 st Floor Structural Plan
CDR -	23	2 nd Floor Framing Plan
CDR -	24	3 rd Floor Framing Plan
CDR -	25	Roof Framing Plan
CDR -	26	3-D Rendering - Structural
		-
CDR -	27	1st Floor Mechanical
CDR -	28	2nd Floor Mechanical
CDR -	29	3rd Floor Mechanical
CDR -	30	Roof Plan
CDR -	31	Mechanical Riser Diagrams
CDR -	32	1st Floor Electrical Plan
CDR -	33	2nd Floor Electrical Plan
CDR -	34	3rd Floor Electrical Plan
CDR -	35	Electrical Riser Diagrams
CDR -	36	1st Floor Plumbing Plan
CDR -	37	2nd Floor Plumbing Plan
CDR -	38	3rd Floor Plumbing Plan
CDR -	39	Roof Plumbing Plan
CDR -	40	Plumbing Riser Diagrams
CDR -	41	Radiation Safety Plan
CDR -	42	Radiation Safety Sections
CDR -	43	Radiation Safety Sections

• Soil Borings Report

APPENDIX A

The following data was compiled as a Basis of Design for design of the building systems.

A.1 REFERENCE MATERIALS

Following are a list of applicable codes and standards followed for the design of the OTE Building.

A.1.1 Applicable Codes

- Illinois Accessibility Code, State of Illinois, Capital Development Board, April 24, 1997
- Illinois Plumbing Code
- NFPA 101, Life Safety Code
- (ICC) International Building Code 2009
- (ICC) International Plumbing Code 2009
- (ICC) International Mechanical Code 2009
- (ICC) International Fuel Gas Code 2009
- (ICC) International Fire Code 2009
- (NEC) National Electrical Code 2005
- (ICC) International Energy Conservation Code 2009
- 2005 National Electrical Code NFPA 70
- 2007 National Fire Alarm Code NFPA 72

A.1.2 Applicable Standards

- NFPA 13 Standard for the Installation of Sprinkler Systems
- NFPA 14 Standard for Standpipe Systems
- NFPA 20 Standard for the Installation of Centrifugal Fire Pumps
- American Society of Civil Engineers SEI/ASCE 7-05 Minimum Design Loads for Buildings and Other Structures
- American Concrete Institute 318-08/318R-08: Building Code Requirements for Structural Concrete and Commentary
- American Institute of Steel Construction Manual of Steel Construction 13th Edition – Load and Resistance Factor Design
- American Institute of Steel Construction Steel Design Guide Series, Design Guide 11: Floor Vibrations Due To Human Activity
- ASHRAE Standard 90.1 2007 Energy Standard for Buildings Except Low-Rise Residential Buildings
- ASHRAE Standard 62.1 2007 Ventilation for Acceptable Indoor Air Quality
- ASHRAE 55 2004. Thermal Environmental Conditions for Human

Occupancy

A.2 STRUCTURAL

A.2.1 Loads

A.2.1.1 Gravity Loading

Superimposed dead loads and live loads are general and pertain to both beam and column design. Some structural elements have specific loading demands in addition to the loads specified here. Live load reduction factors will be used for the design of columns and foundations for all occupiable floor loads less than 100 pounds per square foot. Specific concentrated loads to be determined include the following:

- Elevators
- Overhead doors at Tech spaces
- 3-ton capacity crane in Light Tech spaces either an overhead bridge crane or a mobile gantry crane, currently identified as an alternate scope addition in this report
- Additional loading TBD

A.2.1.2 Dead Loading

All dead loads are to be calculated as the self weight of the structure.

A.2.1.3 Superimposed Dead Loading

Superimposed dead loads will be determined from the architectural design and the design of other building systems. Preliminary values for typical superimposed dead loading are indicated in the table below.

	Loading Type	Loading Value (PSF)
	Floor finishes	15
	Ceiling and services, typical	10
	Partitions	20
	Equipment pads	TBD
	Green roof assembly	TBD
	Cladding (measured on a vertical face)	15
	Others TBD	
A.2.1.4	Floor Live Loading	
	Occupancy/Use	Loading Value (PSF)
	Public spaces	100

Egress corridors and stairs	100
Offices	
General (reducible)	50
Partitions	20
Mechanical equipment rooms – specific loading from heavy equipment will be accommodated in design	150
Light Tech spaces	
General (reducible)	600
Moveable partitions	20
Light storage rooms	125
Heavy storage rooms	250
Roof, with the exception of snow drift loading – see following section	30
Accessible roof gardens	100

A.2.1.5 Snow Loading

Snow loads will be in accordance with Section 7 of ASCE 7. Values to be used in snow load calculation per Chapter 7 of ASCE 7 are indicated in the table below. Special drift areas shall be marked on the plans.

Factor	Symbol	Value
Ground snow load	Pg	25 psf
Exposure factor	C _e	0.9
Thermal factor	Ct	1.0
Importance factor	I	1.1

A.2.1.6 Wind Loading

Wind loads for the preliminary design of the façade support structures as well as the lateral stability system of the building will be in accordance with IBC 2006 and Section 6 of ASCE 7. Values to be used in wind load calculation per Chapter 6 of ASCE 7 are indicated in the table below.

Factor	Symbol	Value
Basic Wind Speed	V	90 mph
Importance Factor	I	1.00
Building Category		П
Exposure		С
Gust Factor	G	0.85
Enclosure		Enclosed
Directionality	K _d	0.85
Factor		

A.2.1.7 Seismic Loading

Seismic loads for the design of the Fermilab IARC facility will be in accordance with IBC 2006 and ASCE 7.

A.2.1.8 Deflection

Vertical deflection of typical composite floor beams shall be limited as follows:

Live load deflection	<	L/360
Total deflection	<	L/240

Where L = beam span (for cantilevers, L = 2x the cantilever length)

Vertical deflection of composite floor beams vertically supporting façade members shall be limited as follows:

Post composite deflection	<	L / 360 or ¾"
Vertical deflection of roof st	ructure	s shall be limited as follows:
Total deflection	<	L/180
Live load deflection <	L/24	0

Lateral deflection of structures shall be limited as follows:

Lateral wind deflection	<	H / 500(over full building height)
Lateral wind deflection	<	H / 400(inter-story drift)
Lateral seismic deflection	<	H / 50, and compatible with building finishes

A.2.2 Floor Vibration Criteria

The susceptibility of the floors to excessive vibrations due to walking excitation shall be assessed according to the provisions set forth by AISC Steel Design Guide, "Floor Vibrations Due to Human Activity," (Murray, Allen, Ungar, 1997). The vibration acceptance criteria shall be based on an "Office" occupancy per Table 4.1 of that publication.

A.3 MECHANICAL

A.3.1 Design Criteria

A.2.1.1 Temperature/Occupancy

Interior spaces will be designed in accordance with the following criteria

- Office Spaces
 - Winter Design 72° F (±2)
 - Summer Design 75° F(±2)/50% RH Maximum
 - 1 person/150 SF
- Tech
 - Winter Design 72° F (±2)
 - Summer Design 75° F(±2)/50% RH Maximum
 - 1 person/300 SF
- Lobbies
 - Winter Design 72° F(±2)
 - Summer Design 75° F(±2)/50% RH Maximum
 - 1 person/50 SF
- Classrooms and Conference Rooms
 - Winter Design 72° F(±2)
 - Summer Design 75° F(±2)/50% RH Maximum
 - 1 person/25 SF
- Lunch Room
 - Winter Design 72° F(±2)
 - Summer Design 75° F(±2)/50% RH Maximum
 - 1 person/25 SF
- Back of House (Mech/Elec rooms)
 - Winter Design 60° F(±2)
 - Summer Design No Cooling
 - Unoccupied

A.2.1.2 Ventilation

Outside air ventilation will be based on the requirements as set out in ASHRAE 62.1-2004. When outside air is supplied to an interior, it has to be cooled or heated for large parts of the year and strategies to minimize the quantity of outside air, whilst maintaining internal air quality standards, can save significant amounts of energy. Demand Control Ventilation will be implemented to make sure that minimum ventilation air is provided to each zone at all times.

Occupancy values shall be based on those suggested by ASHRAE 62.1-2007 or based on actual where specific occupancy can be determined.

A.2.1.3 Building Envelope

The following criteria for the selection of the building envelope components are targeted.

- Roof Maximum U=0.033 Btu/sf*°F (R=30 or better)
- Exterior Walls Maximum U=0.05 Btu/sf*°F (R=20 or better)
- Vision Glass
 - Shading Coefficient Maximum 0.32
 - U-Value 0.29 Btu/sf*°F (Center of Glass)
 - U-Value 0.35 Btu/sf*°F (Overall glass/frame combined)
- Spandrel Glass
 - Shading Coefficient Maximum 0.32
 - U-Value 0.05 Btu/sf*°F
 - U-Value 0.10 Btu/sf*°F (Overall glass/frame combined)
 - _

A.2.1.4 Lighting/Equipment

- Office Space
 - Lighting 1.0 Watts/SF
 - Equipment 1 Computer/Person
 - Miscellaneous Equipment 0.5 Watts/SF
- Lite-Tech
 - Lighting 5.0 Watts/SF
 - Computers 1 Per Person (150 Watts)
 - Miscellaneous Equipment 0.5 Watts/SF
- Lobbies
 - Lighting 1.0 Watts/SF
 - Miscellaneous Equipment 0.5 Watts/SF
- Classrooms and Conference Rooms
 - Lighting 1.0 Watts/SF

- Computers 1 Per Person (150 Watts)
- Miscellaneous Equipment 1.5 Watts/SF
- Lunch Room
 - Lighting 1.4 Watts/SF
 - Miscellaneous Equipment 1.5 Watts/SF
- Back of House (Mech/Elec rooms)
 - Lighting 1.0 Watts/SF

A.2.1.5 Duct and Pipe Sizing Criteria

The maximum duct velocities in ductwork are the following:

Service	Maximum Velocity	Pressure Class	Seal Class
Medium pressure ductwork from AHU discharge to terminal unit	1,800 FPM	4"	А
Main ducts from air handling units in mechanical rooms and in shafts:	1,500 FPM	2"	В
Main branch ducts on each floor:	1,000 FPM	2"	В
Secondary branch ducts:	750 FPM	2″	В
Branch ducts to and from diffuser and grilles, etc.:	500 FPM	2"	В
Exhaust	1500	2" (Negative)	В

Hydronic piping systems (chilled water, heating hot water, condensate drain) shall be Type L copper for sizes $2 \frac{1}{2}$ " and smaller and Schedule 40 steel for sizes 3" and larger. All chemical treatment piping shall be PVC.

On chilled water piping, all insulation shall be a closed cell elastomeric or cellular glass type with vapor barrier and PVC jacket. If piping is run in an exterior space or in equipment rooms, an aluminum jacket shall be provided. On all condensate drain piping, provide elastomeric insulation with vapor barrier and PVC jacket.

In hydronic systems, provide manual air vents at all high points, manual drain valves at all low points, and automatic air vents at the high points of all risers.

Pipe Size (inches)	Velocity (m/s)	Friction (ft H2O/100 ft)	Max. Flow (GPM)
3/4"	2	2.81	3
1	2.35	2.73	6
1-1/4"	2.82	2.91	11
1-1/2"	3.44	3.35	19
2″	3.97	3.08	38
2-1/2"	4.52	2.98	67
3″	4.99	3.11	115
4"	5.85	3.0	232
6"	8.26	3.51	744
8″	8.98	2.05	1400

The following design criteria have been used in pipe sizing:

A.4 PLUMBING

A.4.1 Domestic Water System

The building's domestic cold and hot water system will be sized based on Section 604 of the 2009 International Plumbing Code.

Domestic cold and hot water system pipe sizing will be based on a maximum velocity of 6 feet per second and a maximum allowable pressure loss of 2 psi per 100 feet.

System will be designed to prevent water hammer conditions by providing shock arrestors for batteries of flush valve fixtures, and for quick closing valves.

Wall hydrants will be provided at intervals around the building perimeter and also in mechanical rooms. External wall hydrants will be supplied from the ICW service.

Isolation valves will be provided at all pieces of equipment, the base of all main risers, at branches to each floor and at main bathroom areas and groups of plumbing fixtures.

Valved and capped connections will be provided at each floor to allow the future installation of plumbing fixtures that may be outside the core areas.

Tech areas will be provided with capped cold and hot water connections and floor drains.

Backflow devices will be located on all connections to HVAC equipment.

A.4.2 Sanitary Waste and Vent System

The building sanitary waste and vent system will be sized based on the International Plumbing Code, Chapter 7, Table 709.1, Table 710.1.1 and Table 710.1.2.

Horizontal drainage piping installation will be installed with uniform slopes. The minimum slope shall be based on Table 704.1 of the International Plumbing Code.

Capped connections will be provided to allow the future installation of plumbing fixtures that may be outside the core areas.

A.4.3 Storm Drainage System

Roof drainage system shall be sized based on Section 1106 of the 2009 Edition of the International Plumbing Code, Table 1106.2 and Table 1106.3.

A roof drainage system will be provided for the roof of the building Parapet scuppers are provided to handle overflow drainage requirements.

A.4.4 Plumbing Fixtures

Fixtures will be provided with chromium-plated brass trim and individual stop valves.

Appropriate 'barrier free' fixtures will be provided in accordance with the disabled access codes.

A.4.5 Insulation

All hot water piping system will be insulated.

All storm drain piping below roof will also be insulated up to connection with risers.

All piping, components, and equipment subject to sweating or heat loss will be insulated in accordance with the local energy code with appropriate thickness of insulation.

Additional insulation will be provided to ensure that noise transmission from any overhead and / or in wall plumbing systems are mitigated.

A.4.6 Miscellaneous

New Fire Hydrants shall be Waterous 5 1/4 with 1 - 4.5" steamer port with NH Threads, and 2- 2.5" hose connections with NH Threads.

All underground bolts shall be stainless steel.

Post Indicators Valves (PIV's) shall be American Flow Control Mode IP. 71

Gate Valves shall be American Flow Series 2500 Resilient Wedge Gate Valve

Mechanical joint fittings attached to HDPE Water Main or PVC Water Main shall se restrained joints by Megalug, with a internal stainless steel stiffener for HDPE Pipe.

A.5 ELECTRICAL

All new equipment and pads shall be placed to maximize the central clearance area for future equipment maintenance and replacement.

A.6 FIRE PROTECTION

Sprinkler design densities will be provided per NFPA 13 provisions

All areas of the building will be provided with sprinkler protection unless not required by code.

Sprinkler system will be provided with automatic sprinklers, control valves, drain valves, water flow switches, tamper switches and alarm panel.

Each floor or level will be annunciated as a separate zone at the main fire alarm panel.

Dry sprinkler systems will be provided for unheated areas

LEGEND

5

- 🤃 NATIVE PLANTS
 - LANDSCAPE ROCK (DARK GRAY, 12" D, SIZE RANGE 3"-4")
- B PLANT KEY 12 – PLANT QUANTITY
 - STEEL EDGING (3/16" W X 4" D, BLACK)

NOTES

- 1. RESTORE ALL AREAS DISTURBED BY CONSTRUCTION UNLESS NOTED OTHERWISE. RESTORATION SHOULD INCLUDE 8 FEET MINIMUM BEYOND CONSTRUCTION FENCE.
- 2. ALL NEW PLANTING BEDS SHALL HAVE FINELY SHREDDED HARDWOOD BARK MULCH, 3" DEPTH. DO NOT COVER GEO-THERMAL WELLS WITH MULCH.
- 3. SEE SURVEY DRAWING FOR EXISTING CONDITIONS. SEE SITE PLAN FOR INFORMATION ON SITE DEMOLITION WORK.
- 4. IF A DISCREPANCY EXISTS BETWEEN THE NUMBER OF PLANTS SHOWN IN THE PLANT MATERIALS SCHEDULE AND THE PLANS, THE PLANS SHALL GOVERN.
- 5. MATCH FINISHED TOP ELEVATION OF MULCH AND LANDSCAPE ROCK WITH FINISHED ELEVATION OF ADJACENT SIDEWALK AND PLAZA.

PLANT MATERIALS SCHEDULE

KEY	COMMON NAME / BOTANICAL NAME	QTY	ROOT	SIZE	REMARKS
	NATIVE PLANTS				
PR	LITTLE BLUESTEM Schizachyrium scoparium	19,394	CONT.	#1	MIX THESE PLANTS EVENLY IN FACH
	PRAIRIE DROPSEED Sporobolus heterolepis				AREA SHOWN.
	PRAIRIE BLAZING STAR Liatris pycnostachya				PLANT AT 15″ O.C., TYP. QTY. SHOWN IN EACH
	HUSKER RED FOXGLOVE BEARDTONGUE Penstemon digitalis 'Husker Red'				AREA INDICATES TOTAL NUMBER OF PLANTS COMBINED.

DRAWING NO.

CDR-6

CDR-13

1 Office Layout - Option C SCALE: 1" = 40'-0"

010

LEGEND:

(1)

(2)

BELLED CAISSON - INNER DIAMETER INDICATES SHAFT	, OUTER DIAMETER INDICATES
OUTER EDGE OF BELL AT BASE	

BELLED CAISSON SCHEDULE						
MARK	SHAFT DIAMETER	BELL DIAMETER		CAP		MAX SERVICE LOAD
	(ft)	(ft)	B (IN.)	W (IN.)	D (IN.)	(KIPS)
C1	3' - 0"	9' - 0"	48"	48"	48"	405
C2	3' - 6"	10' - 6"	54"	54"	48"	573
C3	4' - 0"	11' - 6"	60"	60"	48"	694
C4	4' - 0"	13' - 6"	60"	60"	48"	1020

κ`

C1

 (\circ)

C3

C4,

C3). (fr) ĿΦ

+-(l)

ĹĽ

C2

C4

()

+()-

DOWNWARD BRACE OR TRUSS WEB DIAGONAL MEMBER

UPWARD BRACE OR TRUSS WEB DIAGONAL MEMBER

INDICATES V-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 2

 $(A = A^{1}) = A^{21 \cdot 3177} + A^{21 \cdot 3177}$ INDICATES A-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 4

CDR-21

BELLED CAISSON - INNER DIAMETER INDICATES SHAFT, OUTER DIAMETER INDICATES OUTER EDGE OF BELL AT BASE

INDICATES COLUMN BELOW (STOPS AT THIS LEVEL)

UPWARD BRACE OR TRUSS WEB DIAGONAL MEMBER

INDICATES V-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 2

INDICATES A-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 4

MARK	B (FT.)	W (FT.)	DEPTH (IN.)
F1	10'	10'	18"
F2	12'	12'	24"
F3	20'	20'	33"
F4	15'	35'	40"
F5	20'	30'	40"

MARK GR 01

00 01
GB 02
GB 03

- OUTER EDGE OF BELL AT BASE
 - INDICATES COLUMN BELOW (STOPS AT THIS LEVEL)

- INDICATES V-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 2
- <u>____</u> INDICATES A-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 4

- - AND COLUMNS): 8.0 PSF
 - B. 3.0 PSF
 - С 293 TONS

- - AND COLUMNS): 8.0 PSF
 - B. 3.0 PSF
 - С 293 TONS

- OUTER EDGE OF BELL AT BASE

 - INDICATES COLUMN BELOW (STOPS AT THIS LEVEL)

- INDICATES A-TYPE GEOMETRY CONNECTION AT WALL TRUSS MEMBERS AT LEVEL 4

- 2.
 - AND COLUMNS): 8.0 PSF
 - Β. 3.0 PSF
 - C. **293 TONS**

1" = 40'-0"

TECHNICAL, AND EDUCATION BUILDING 2ND FLOOR MECHANICAL OFFICE, Fermilab U.S. DEPARTMENT OF 10.06.2010

arc ARI

10-8-1

DRAWING NO. **CDR-28**

- (\mathbf{C})
- MAIN (ICW)

- (H) SANITARY RISER
- (J) ROOF DRAIN

IST FLOOR PLUMBING PLAN

1" = 40'-0"

1

DOMESTIC WATER LATERAL TO BUILDING FROM SITE MAIN (DCW)

(D) FIRE LATERAL TO BUILDING FROM SITE

(E) COLD & HOT WATER TO TECH SPACE

(F) DOMESTIC HOT & COLD WATER RISERS

(G) FIRE SPRINKLER & STANDPIPE RISER

 (\mathbf{F})

- (H) SANITARY RISER
- J ROOF DRAIN

(C) DOMESTIC WATER MAIN TO BUILDING (DCW) D FIRE MAIN TO BUILDING (ICW) (E) COLD & HOT WATER TO TECH SPACE DOMESTIC HOT & COLD WATER RISERS (G) FIRE SPRINKLER & STANDPIPE RISER 80

- (H) sanitary riser
- J ROOF DRAIN

(B) STORM LATERAL TO SITE MAIN (C) DOMESTIC WATER MAIN TO BUILDING (DCW) D FIRE MAIN TO BUILDING (ICW) E COLD & HOT WATER TO TECH SPACE F DOMESTIC HOT & COLD WATER RISERS (G) FIRE SPRINKLER & STANDPIPE RISER

80

1 SECTION SCALE: 1"=20'

STA. 28+20 RAD SAFETY DRAWINGS SECTION PROJECT NO. 10-8-1

STA. 28+20 RAD SAFETY DRAWINGS SECTION PROJECT NO. 10-8-1

80		g	0	1	00	1	10	1	20		130
	8	5	9	5	10	15	1	15		125	12
											770
											765
JC√	,										
101											760
											755
											RING ROAL
											750
											730
-											745
UPÅ	١NC	Y									
-	-										740
											735
											730
											725
											700
\rightarrow											/20
											715

170 160 150 140 13 175 165 155 145 135	130 120 110 100 125 115 105 95	90 80 70 65	60 50 40 30 65 2 55 2 45 35 25		20 30 40 50 60 5 25 35 45 55 65	70 80 90 100 110 1 75 85 95 105 115
					CENTERLINE OF THE EXISTING ENCLOSU	
765			RETAINING WALL - E	EXIST. 4' WOVEN	- <6' ABOVE GRADE: 21.9' UNLIMITED O	
760			EL. 153.3 V		- >6' ABOVE GRADE: 15.9' RESTRICTED	
R0AD D		BUILDING			4'WOVEN V	
750					FENCE	RiNG ROAD
745				BEAMLINE		745
740					TYPE 4 PRECAST CONCRETE SE	ECTION
735			EL. 740.10'			735
730					7 7 T/CONC. EL. 737.04'	730
725		FC	OOTING			OND
720						720
715					EL. 722.50	715
				PILE\$		
					DROCK	

6

Oar ARU Methodare chara and boto assession of the area and boto

		U I 7	е е		, 9 ,	i a	۰۲ م	00	1	10	12
١G	ENC	LOS	SURI	Ē					.5		5
Mľ	TED	000	UP	ANC	Y						770
ST	RIC	TED	000	UP	ANC'	Y					765
											760
⊃V >⊨	EN \	WIRE	-								755
기 기	NG C	YRC	•								750
S											
											745
											740
											735
											730
											725
											700
											120
											715

Geotechnical Engineering Report

for

IARC BUILDING BATAVIA, ILLINOIS

Prepared for

FERMI NATIONAL ACCELERATOR LABORATORY

PROJECT No. 21053.034

AUGUST 9, 2010

SUBMITTED BY:

TABLE OF CONTENTS

INTRODUCTION	, 1
PROJECT DESCRIPTION	, 1
SITE INVESTIGATION	, 1
LABORATORY TESTING	. 2
SITE CONDITIONS	. 2
Surface Conditions	. 2
Soil Conditions	. 3
Groundwater Observations	. 4
Seismic Classification	. 4
ENGINEERING ANALYSIS AND RECOMMENDATIONS	. 5
Demolition and Site Preparation Recommendations	. 5
Fill Material and Placement	. 6
Foundation Design Recommendations	. 7
Pavement Design and Construction	10
Construction Considerations	11
Construction Quality Control and Quality Assurance	12
LIMITATIONS	12

TABLES

Table 1 - Coarse Aggregate Gradations		7
---------------------------------------	--	---

APPENDICES

Appendix A - Boring Location Plan Appendix B - Soil Boring Logs Appendix C - Laboratory Results Appendix D – Technical Bulletin No. 9 – GeoPier Foundation Co. Inc.

INTRODUCTION

This report presents the results of the geotechnical investigation performed by Patrick Engineering Inc. (Patrick) for the proposed Illinois Accelerator Research Center (IARC) Facility at the Fermi National Accelerator Laboratory in Batavia, Illinois (Fermilab).

This report was prepared according to the scope of services outlined in Patrick's proposal No. 2A953.631, dated April 26, 2010. The purpose of the geotechnical investigation, as outlined in our proposal, was to evaluate the subsurface conditions in the project area and provide recommendations regarding foundation design for the planned building. This report also includes demolition and site preparation recommendations and construction considerations.

PROJECT DESCRIPTION

The Project area is located adjacent to the CDF Building along B Road at Fermilab. The project will include a new three-story 40,000-square-foot slab-on-grade office building. The new building will be located in the existing parking lot with a façade that wraps in front of the CDF Building. A walkway between the new office building and the existing CDF Building is also being considered.

Additional parking will also be constructed in conjunction both building configurations. At this time, it has not been determined where the parking lot(s) will be located.

SITE INVESTIGATION

Field Exploration

Field exploration activities included drilling and sampling eight borings to depths ranging from 30 to 75 feet. Field exploration activities were performed on June 11 and June 14, 2010. The boring locations were selected and identified on site by representatives of Fermilab and Patrick. Ground surface elevations for the boring locations were estimated from an existing site conditions survey provided by Fermilab. The approximate boring locations and elevations are shown on the attached Boring Location Plan (Appendix A).

The boreholes were advanced using a truck-mounted CME-75 drill rig using 4¹/₄" ID hollow-stem augers. Disturbed soil samples were collected at 2.5-foot intervals down to 15 feet and at 5-foot intervals thereafter using a 2-inch OD split-spoon sampler as part of the Standard Penetration Test (SPT). The sampler was initially seated by driving it six inches, and then driven an additional 12 inches using a 140-pound hammer falling 30 inches. The number of blows required to drive the sampler the last 12 inches is designated as the SPT "N-Value". SPT sampling was performed in general accordance with ASTM D 1586. Several samples of cohesive soils were obtained using a 3-inch Shelby tube, in general accordance with ASTM D 1587.

Field exploration activities were supervised by an experienced Patrick geologist who logged the soil conditions and collected representative soil samples for visual classification and possible laboratory testing. The soils were logged according to the Soil Description Terminology and the locally adapted version of the Unified Soil Classification System, ASTM D 2487, as presented in Appendix B. The filed logs, together with laboratory test results, were used to develop the final boring logs presented in Appendix B.

LABORATORY TESTING

Soil samples were transported to a local laboratory for moisture content testing. Select samples were tested for Atterberg limits, grain size analysis, dry unit weights and unconfined compressive strength. Results of the testing program are presented on the logs in Appendix B, with the laboratory results included in Appendix C.

SITE CONDITIONS

Surface Conditions

The project area is currently an asphalt parking lot, with a depressed concrete loading dock entrance at the northwest corner of the building. The area is bounded to the south by the accelerator ring berm and perimeter fence. There is a large storm sewer and manhole in the center of the parking lot. The western edge of the parking lot drains to the vegetated wetland area adjacent to the west of the lot. A large drainage outlet from the storm sewer was observed flowing to this lower lying ditch area. This area is covered with large brush and tall grasses separating D Road from the accelerator ring berm. A pedestrian and bike path parallels D Road along the north side of the CDF Building. Large trees line the bike path for the length of the building.

Design drawings (6-1-37) for the CDF Building were provided by Fermilab. Based on these drawings the existing building has a basement extending to a depth of 36 feet below existing grade. The basement slab elevation is $709' 11\frac{1}{2}''$. The building is supported on a combination of shallow spread footings below the basement and caissons.

Soil Conditions

At most of the boring locations, the pavement section consisted of 3 to 4½ inches of asphalt underlain by crushed stone aggregate base. The aggregate base materials generally ranged in thickness from 1½ to 2 feet. Below the aggregate base materials in Boring S1408, approximately 3½ feet of 34-inch limestone was also encountered. At the surface of Boring S1409 in the grass area, approximately 12 inches of topsoil and organic clay materials were encountered.

Subsurface soils below the pavement section and topsoil generally consisted of layers of silty clay, silt and silty sand underlain by limestone bedrock.

A layer of soft to medium stiff silty clay/clayey silt was encountered in most of the borings and extended to depths of about 13 to 17 feet below existing grade. Generally, this material had compressive strength values ranging from 0.25 to 1.0 ton per square foot (tsf). Laboratory unconfined compressive strength tests were performed on several samples of this material with results ranging from 0.24 to 0.59 tsf. Below the soft to medium stiff silty clay, stiff to very stiff silty clay was encountered which generally extended to depths of about 60 feet. These materials had compressive strength values ranging from 3 to 4.5 tsf. Borings S1404, S1407 and S1410 were terminated in this stiff layer at depths of 30 feet.

Boring S1411 encountered miscellaneous fill consisting of clay and sand layers through the depth of the boring. An obstruction was encountered at a depth of 18 feet and the boring was offset to continue to the planned terminal depth. Wood pieces were encountered in the sampler at depths of 25 to 30 feet.

Auger refusal was encountered upon reaching bedrock in each of the deep borings (S1405 and S1406) at depths of 70.4 and 70 feet, respectively.

Groundwater Observations

Groundwater observations were made while drilling by noting either the depth to water as measured on the drill rods or the presence of free water in the soil samples. Upon completion of the borehole and removal of the augers, groundwater was measured in the open borehole if the hole did not cave in.

While drilling, groundwater was encountered at depths ranging from 6 to 9.5 feet below grade. After drilling, groundwater was observed in Borings S1404, S1405 and S1406 at depths of 23 feet, 55 feet and 64 feet, respectively. Free groundwater was not observed in the remaining borings after drilling. Given the color change and moisture contents of the soils below a depth of 10 feet, it is anticipated that the long term groundwater elevation is consistently below this depth; however groundwater levels fluctuate, and higher water levels may be present after periods of precipitation and during prolonged wet periods.

Seismic Classification

In accordance with the 2009 International Building Code (IBC 2009) Section 1613, Table 1613.5.2, the Property has a Seismic Site Classification of D. The classification is based on the upper 100 feet of the soil profile having average undrained shear strengths between 1,000 and 2,000 psf, and SPT N values between 15 and 50. While the Site does exhibit soft soil layers near the surface, laboratory test results (plasticity indices and moisture contents) do not meet the Class E requirements.

ENGINEERING ANALYSIS AND RECOMMENDATIONS

The following recommendations for design and construction of the proposed foundations are based on the geotechnical data gathered in this investigation.

Demolition and Site Preparation Recommendations

The proposed building footprint is located within an existing parking lot, and it is anticipated that the existing pavements and retaining structures for the loading dock will be completely removed. Existing utilities that interfere with the proposed construction should be properly abandoned in place or removed / rerouted and the excavations backfilled with compacted structural fill to prevent settlement. It is recommended that any demolition excavations are backfilled with compacted structural fill as described below.

Landscaped areas of the Site should be cleared of trees and stumps, and grubbed to a suitable depth to remove all large roots (diameters greater than 2 inches).

Asphalt and aggregate base materials were encountered at the ground surface of most borings. These materials should be removed, and may be stockpiled on site (if possible) for possible reuse as general fill.

After initial clearing and grading, subgrade areas for slab-on-grade construction should be proofrolled with a fully-loaded, 10-wheel dump truck to check for soft or unstable soils. Zones of soil that exhibit instability, such as rutting or pumping in excess of 1 inch, should be recompacted or removed and replaced. The actual depth and volume of undercut should be determined at the time of construction based on observations and tests by an experienced geotechnical engineer. Excavated material should be replaced with approved structural fill and compacted according to the project specifications.

Fill Material and Placement.

Structural fill to be used at the Site should be approved inorganic soil, free of waste, debris, deleterious material, and excess moisture. The fill should be placed where dry and stable conditions exist at design or undercut subgrade.

Granular fill may consist of locally available crushed limestone, crushed gravel with sand, or recycled concrete meeting the gradation limits provided in Table 1. Where wet conditions are encountered, crushed limestone similar to the free draining 1.5- or 3-inch gradations in Table 1 should be used. Fill used at the Site should meet the following minimum requirements.

- 1. Fill material shall not contain more than 5% organic material when tested in accordance with ASTM D 2974, and shall be free of waste, debris, and frozen deleterious material.
- 2. Cohesive fill shall have a liquid limit less than 45 and a plasticity index less than 25 and greater than 10.
- 3. Materials unsatisfactory for use as fill include soils classified as silt or organic silt in the Unified Soil Classification System ASTM D 2847 (i.e., ML, MH, PT, OL, and OH).
- 4. Structural fill should be placed in foundation bearing areas in maximum 8-inch-thick loose lifts, and compacted to at least 95% of the modified Proctor density. Structural fill materials should extend 5 feet beyond the perimeter of any proposed foundation pads.
- General fill should consist of free-draining granular material (no fines) placed in maximum 10-inch loose lifts and compacted to at least 92% of modified Proctor density to improve material density through particle interlock.

n (gi	Sieve Size 🕨	3″	2.5″	2″	1.5″	1″	0.5″	No. 4	No. 16	No. 200*
latio assir	3-inch	100	95±5	60±15	15±15	3±3				
Grae % P	1.5-inch				100	95±5	75±5	43±13	25±15	8±4
	1.5-inch FD				100	95±5	45±15	5±5		

Table 1. Coarse Aggregate Gradations

FD – free draining

Groundwater Control

The upper native soils generally consist of silty clays and therefore it is not expected that significant groundwater control will be necessary during construction. However, if perched groundwater is encountered in the pavement base course or granular layers, it is Patrick's opinion that any such water can be controlled using conventional sumps with pumps. Dewatering may be required, and it is our opinion that water from seepage and/or precipitation can be controlled during construction using conventional sumps and pumps.

Foundation Design Recommendations

Patrick has considered three possible options for the building foundation system, which are presented below. These include shallow foundations, an intermediate depth foundation system such as GeoPiers[®] and deep foundations such as drilled piers.

For all three foundation alternatives, the proximity of the proposed foundations to the existing CDF basement foundations and walls will need to be reviewed. Influence of the new foundation loads on the existing foundations could potentially cause settlement of the existing building and additional lateral loading on the basement walls.

Shallow Foundations

Based on the subsurface conditions encountered in the soil borings, subgrade soils are generally appropriate for properly designed and constructed shallow foundations.

Spread footings should bear at a depth of at least 42 inches below the finished exterior grades to protect against frost heave. Where soft native materials or existing fill (such as Boring S1411) are encountered at the design bearing elevation, overexcavation will be necessary. The existing fill materials in Boring S1411 are not considered suitable for support of shallow foundations. Where soft materials are encountered, it is anticipated that undercuts of 2 to 3 feet below proposed bearing elevation may be necessary.

Overexcavated footings should be backfilled with compacted structural fill to design bearing elevation. The overexcavated area should be widened $1\frac{1}{3}$ feet for every foot of depth below design subgrade and backfilled with compacted structural fill, as shown below. Structural fill used to bring the grade to bearing elevation should be compacted granular fill placed in lifts less than 8 inches, loose measure.

slopes should conform to OSHA requirements.

For design purposes, spread footings should have a minimum width of 24 inches and continuous strip footings have a minimum width of 18 inches, provided they are founded below the frost penetration depth.

Allowable Bearing Pressure and Settlement

Shallow foundations can be designed using a maximum allowable bearing pressure of 2,000 pounds per square foot (psf) (includes a Factor of Safety of 3.0 against bearing capacity failure).

Based on this allowable bearing pressure, Patrick estimates total settlement of the new structures will be less than 1 inch.

Intermediate Depth Foundations

An intermediate depth foundation system such as GeoPiers[®] or Rammed Aggregate Piers[®] (RAP) could also be considered for support of the proposed building. This type of system would provide stabilization of the upper lower strength soils at the site and provide a significantly higher allowable bearing pressure for foundations. The Rammed Aggregate Pier system provides an *in situ* soil stabilization that would allow conventional footings to then be constructed.

Based on the site conditions, it is anticipated that shallow foundations constructed above a site stabilized with GeoPiers[®], could be designed using a maximum allowable bearing pressure of 6,000 psf. It is estimated that total settlements would be less than 1 inch, with differential settlement on the order of $\frac{1}{2}$ inch.

Figure: Example of conventional footing supported on GeoPiers®

RAP[®] Systems can also provide economical solutions for the support of conventional light to heavily loaded floor slabs, therefore eliminating the need for a structural slab. This foundation system also provides an alternative to costly deep foundations such as drilled piers.

Due to the proximity of the accelerator ring and the existing building to the proposed building footprint, construction disturbance and vibration will need to be considered when selecting a foundation system. Technical Bulletin No. 9 by the GeoPier[®] Foundation Co. Inc. on Vibration and Noise Levels is provided in Appendix D for consideration of this foundation alternative.

Additional design information for this foundation alternative can be provided upon request if this alternative is considered for the project.

Deep Foundations

Deep foundations can also be used to support the proposed building. Given the subsurface conditions, drilled piers (caissons) extending to the very stiff silty clay are recommended.

We estimate that caissons will need to extend to depths of approximately 40 to 45 feet below existing ground surface to provide adequate capacity with a factor of safety of 3 against bearing failure.

Drilled piers should extend through the compressible soils and into the underlying clay till materials. Straight shaft drilled piers with a minimum 12-inch diameter, extending to the very stiff clay at depths of 40 to 45 feet could be designed using an allowable bearing pressure of 9 ksf. Grade beams along the perimeter of the building should be constructed to extend below frost depth (approximately 3.5 feet below final grade).

Caissons designed and installed according to the above recommendations are anticipated to incur settlements less than 0.5 inches. Problems associated with downdrag forces on the caissons are not anticipated, as no appreciable fill will be placed for project construction.

Pavement Design and Construction

For light duty pavements, such as those in parking and drive areas limited to passenger vehicle use, we recommend a minimum pavement section consisting of a 1.5-inch bituminous surface course and a 2-inch bituminous binder on an 8-inch aggregate base. For heavy duty pavements, such as those in areas frequented by delivery trucks, we recommend a 2-inch bituminous surface course and a 3-inch bituminous binder course on a 10-inch aggregate base, or 8 inches of Portland cement concrete on a 4-inch granular subbase. Actual thickness and pavement type will depend on actual design loads, frequency of loads and turning conditions.

Aggregate base and granular subbase material should be similar in gradation to the 1.5 crushed aggregate listed in Table 1.

Subsurface drainage of the pavement section is important for pavement performance. To reduce the potential for subgrade failure and pavement cracking, low points in the pavement include subsurface drains discharging to the stormwater management system.

Construction Considerations

Excavations should follow Occupational Safety and Health Administration (OSHA) guidelines. Excavated soil and heavy construction equipment should not be permitted closer to the top of excavation than a distance equal to two times the depth of the excavation in order to reduce the possibilities of slope failure.

Temporary excavations should have a maximum slope of 1 horizontal to 1 vertical or flatter as required to provide stable side slopes. Excavations should be completed in accordance with OSHA Regulation 1926 Subpart P, Appendix B on "Sloping and Benching." The bottom of excavations should extend a minimum of 1 foot beyond the plan dimension of the footings to allow for adequate working space.

The existing ground surface should be sloped or ditches should be provided to prevent precipitation and runoff from entering the foundation excavations during construction. Minor dewatering may be required, and it is our opinion that water from seepage and/or precipitation can be controlled during construction using conventional sumps and pumps.

Construction will likely be accomplished using standard construction equipment. Subgrade exposed to adverse weather and/or construction traffic is likely to soften, requiring improvement

before construction of foundations and pavement sections. Site soils may pump and rut under heavy equipment traffic.

Construction Quality Control and Quality Assurance

Patrick recommends a geotechnical engineering firm be retained to assist with quality assurance and quality control (QA/QC) activities. A general review of final design plans and specifications should be completed by the geotechnical consultant to ensure that the intent of the recommendations contained in this report is incorporated as intended. QA/QC services should include subgrade and construction materials inspection, fill placement monitoring and compaction testing, as well as concrete and pavement subgrade inspection, and observation of proofrolling. Since construction materials testing and observation services will be an important part of the facility improvements, an experienced geotechnical engineer should be present to provide these services and/or monitor the construction activities.

LIMITATIONS

The recommendations contained in this report are based on the soils encountered at the boring locations. Should conditions encountered during excavation and construction operations differ from those encountered in the borings, Patrick should be notified so that the recommendations can be reviewed and revised if necessary.

This investigation was performed in accordance with accepted geotechnical engineering practices for determining soil conditions and preparing recommendations for the referenced site improvements only. Verification of the subsurface conditions for purposes of determining the extent of contaminated soils or groundwater, difficulty of excavation, dewatering, and trafficability is beyond the scope of this investigation. In the event that any changes in the nature, design or location of the proposed construction are made, the conclusions and recommendations contained in this report should not be considered valid until the changes are reviewed and the conclusions and recommendations in this report have been modified or verified in writing. This report is for the exclusive use of the Client and no one else without written consent from Patrick Engineering Inc.

Report Reviewed by: Report Prepared by: Edgellw Dawn Edgell, P.E. Gary F. Goodheart, P.E. Project Engineer Senior Program Director

p:\lisle\fermilab\21053.034 iarc project\geotech\report\final\report.doc

APPENDIX A

BORING LOCATION PLAN

Proj No.: 21053.034 —
Date: 06-18-2010
APPENDIX B

BORING LOGS SOIL DESCRIPTION TERMINOLOGY

	BORING NUMBER	S1404	SHEET	1	OF	2				
	CLIENT	Fermi National Accele	erator Labo	rato	ry					
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034								
	LOCATION	Batavia, IL N4150'26	.6"; W8815'	03.3						
LOGGED BY SEK										

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL 2 10 2 Unconfin Stre	ter Content $-\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc 40$ $-\bigcirc 30 40$ $-\bigcirc 1$ $-\bigcirc 1$	LL 50 7e € 5	NOTES & TEST RESULTS
745.9	0: 4		4.5" asphalt Crushed limestone base course	SS-1 1.0-2.5 12"B	11 8 5	12 Q			qu=1.75*tsf
743.5	4.0		Dark gray silty clay, trace roots, medium stiff, moist CL	SS-2 35-50	6 4		23 0		qu=2.0*tsf
740.0	5.5		Grades to gray/brown clayey fine sandy silt, soft to very soft, moist	16"R	5	14			gu=0.5*tsf
			SM/ML	6.0-7.5 16"R	5 2				% Sand=33.7 % Silt=55.6 % Clay=10.7
735.0	10.5			SS-4 8.5-10.0 8"R	4 5 3				qu=0.25*tsf
			Gray to dark gray silty/clayey silt, very soft to medium stiff, moist to wet CL-ML	ST-1 11.0-13.0			24		Dry density=114pcf
				SS-5 13.5-15.0 18"R	1 4 4		211 0 1		qu=0.25*tsf qu=1.25*tsf
728.5	17.0								
			Brown/gray silty clay, little fine to coarse sand, stiff, moist CL	SS-6 18,5-20.0	11 12	14 0			qu=3.0*tsf
				14"R	15				
DRILL DRILL DRILL			RACTOR Groff Testing Corp. OD 4.25" I.D. HSA PMENT CME 75	IARKS ehole filled w n completion	ith c	uttings ⊻ ⊻	ATER LEVE 8.5' while 23.0' after	<u>∟ (ft.)</u> drillir drillin	ng g
						<u> ₹</u>)

					BC	DRING	NUMBER	:	S1404			S⊦	IEET	2 OF 2		
D					CL	IENT		Ferm	ni Natio	nal Accelerator Laboratory						
	~ ! ! `				PF	ROJEC	CT & NO.	IARC	Build	ing 21053.034						
					LC	CATIO	NC	Bata	via, IL	N41	50'26	26.6"; W8815'03.3"				
LOGG	ED B	Y	SEK													
GROU	ND E	LEV	ATION 7	745.5												
							SAMPLE		PL _	Wate ———	er Con	tent — <i>— −</i> ∧	LL	NOTEO		
	Ξ	ТA		SOIL/ROCK			TYPE & NO.	S S S	10	20) 3		5 50	NOTES &		
ΈV	L L L	RA		DESCRIPTION			DEPTH (FT)	MON	Un	confine Strei	ed Con ngth (T	npressi∖ 'SF) ≯	∕e €	TEST RESULTS		
Ц Ц	DE DE	5 Lo					RECOVERT(IN		1	2	3	3 4	5			
725.5	20.0															
			Crowa	iltu alay, traca fina ta a	ooro	•										
			sand. v	verv stiff. moist	Jais	e				i I						
			,	,,,		CL										
							SS-7	7		15				gu=3.5*tsf		
							23.5-25.0	5		9						
							12"R	7								
								1								
										- ¦						
										i						
							<u>SS-8</u>	8		15				au>4.5*tsf		
							28.5-30.0	8		0				qu to:		
715.5	30.0						14"R	11								
				End of Boring at 30.0'				1								
										I						
DRILL	ING C	CONT	RACTOR	Groff Testing Corp.		REM	IARKS			WA	TER	<u>LEVE</u>	L (ft.)			
DRILL	ING N	ЛЕТН	IOD	4.25" I.D. HSA		Bore	hole filled	with o	cutting	s <u>⊽</u> 8	8.5'	while	drillir	ng 🛛		
DRILL	LING EQUIPMENT CME 75															

Ţ

ENDED 6/11/10

DRILLING STARTED 6/11/10

	BORING NUMBER	S1405	SHEET	1	OF	4				
	CLIENT	Fermi National Accelerator Laboratory								
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034								
	LOCATION	Batavia, IL N4150'27	.0"; W8815'	04.4						
LOGGED BY SEK										

						Water Conte	ent	
		₫.	SOIL/ROCK		03		- <u>→</u> LL 40 50	NOTES
	HT (ATZ		DEPTH (FT)	MT;	Unconfined Com	pressive	&
ы Ц	ЫЦ	TR	BEGGINI HON	RECOVERY(IN)	SLOU	Strength (TS	SF) ₩	IEST RESULTS
745 5	6	01	3.5" asphalt		щО			
145:2	0:5	X						
		X		<u> </u>	5	12		au=1 25*tsf
740 5	20	.•		1.0-2.5	3	9		qu 1.20 toi
743.5	2.0		Light brown/gray silty clay_some	12"R	4			
			sand and gravel, trace fine sand,					
			medium stiff, low plasticity, moist					
			CL	SS-2	5	21		gu=1.5*tsf
				3.5-5.0	3	Ρ		•
				16"R	5			
			Little fine sand, soft	SS-3	2	16		qu=0.5*tsf
				6.0-7.5	2			
				IOR	3			
737.5	8.0					N N		
			Dark gray silty clay, trace organics,					
			very soft, moist to wet	SS-4	3			qu=0.25*tsf
			OL-ML	8.5-10.0 18"R	3			LOI=2%
					Ŭ			
					2	21		
				11 0-12 5	2 1			4u=0.0 tsi LL=21
				18"R	1			PI=8
700 5	12.0							
132.5	13.0		Grav clavev silt_trace fine to coarse					
			sand, medium stiff, moist	SS-6	3	16		au=1.0*tsf
			ML	13.5-15.0	5			% Silt=61.1
				14"R	4			% Clay=10.1
								% Gravel=5.6
728.5	17.0							
			Gray silty clay, some sandy gravel,					
			dense, moist					
			CL					
				SS-7	12	1/4		
				18.5-20.0 4"R	13			
יוופח		דוארי	PACTOR Groff Testing Corn					
					ith -			
				noie fillea W	ntn C	$\frac{1}{2}$ uttings \underline{Y} 9.0°		ig
	LINGE					⊻ 55.0' a	atter drillin	g
DRILL	LING STARTED 6/14/10 ENDED 6/14/10							

	BORING NUMBER	S1405	SHEET	2	OF	4				
	CLIENT	Fermi National Accelerator Laboratory								
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034								
	LOCATION	Batavia, IL N4150'27	.0"; W8815'	04.4						
LOGGED BY SEK										

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	COUNTS	PL Water Content 10 20 30 Unconfined Compress Strength (TSF) 1 2 3	LL 40 50 ive # 4 5	NOTES & TEST RESULTS
725.5	20.0		Gray silty clay, little fine to coarse sand, trace gravel, very stiff, moist	SS-8 23.5-25.0 18"R	5 6 9	15 		qu=3.5*tsf
			Trace fine to medium sand	SS-9 28.5-30.0 16"R	5 7 9	16 		qu=4.25*tsf
				SS-10 33.5-35.0 18"R	6 7 9	18 		qu=3.5*tsf
			Medium stiff, wet	SS-11 38.5-40.0 18"R	3 4 7	1 1 1 1 1 1		qu=1.5*tsf
DRILL DRILL DRILL DRILL	ING 0 ING N ING E	CONT METH EQUIF STAR	RACTOR Groff Testing Corp. IOD 3.25" I.D. HSA PMENT CME 75 TED 6/14/10 ENDED 6/14/10	MARKS rehole filled wit on completion.	th c	uttings ♀ 9.0' while ♀ 55.0' after ♀	<u>EL (ft.)</u> e drillir [.] drillin	ng g

	BORING NUMBER	IR S1405 SHEET 3 O									
PATRICK ENGINEERING INC.	CLIENT	Fermi National Accelerator Laboratory									
	PROJECT & NO.	IARC Building 21053.034									
	LOCATION	Batavia, IL	N4150'27.0"; W8815'04.4"								
LOGGED BY SEK											

GROUND ELEVATION 745.5											
ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL Wa 10 2 Unconfin Stree	ter Content $- \bigcirc \frown - $	NOTES & TEST RESULTS		
705.5	40.0		Brown/gray silty clay, trace fine sand, hard, moist		SS-12 43.5-45.0 12"R	5 10 15		9	qu>4.5*tsf		
			Very stiff		SS-13 48.5-50.0 18"R	4 11 11		1 1 21 0 1 1 1 1 1 1 1 1 1 1 1 1 1	qu=3.0*tsf		
					SS-14 53.5-55.0 18"R	3 6 9		21	qu=2.5*tsf		
686.0	59.5 ING C		RACTOR Groff Testing Corp.	REM	SS-15 58.5-60.0 18"R	5 13 12		ATER LEVEL (ft.)			
DRILL	RILLING METHOD3.25I.D. HSABorenole filled with cuttings \checkmark 9.0while drillingDRILLING EQUIPMENTCME 75upon completion. \checkmark 55.0' after drilling										

Ţ

DRILLING STARTED 6/14/10

ENDED 6/14/10

	BORING NUMBER	S1405	SHEET	4	OF	4				
	CLIENT	Fermi National Accelerator Laboratory								
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034								
	LOCATION	Batavia, IL N4150'27	.0"; W8815'	04.4						
LOGGED BY SEK										

ELEV.	DEРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL	Wa 	ter Con 0 3 ed Con ength (T 2 3	tent 0 4 1pressir SF) ≯	LL 0 50 ve K 4 5	NOTES & TEST RESULTS
685.5 685.5 676.0 675.1	 Geven 2 Geven 2		Fine to coarse sand and gravel, some silt and clay, dry SP-GP Weathered rock pieces Brown/gray silty clay, little fine to coarse sand, soft, moist CL Silty fine sand seam at 69.0' Gray silty clay and weathered rock, hard, very dense, moist Auger refusal at 70.4' on apparent bedrock. End of Boring at 70.4'	SS-16 63.5-65.0 12"R SS-17 68.5-70.0 14"R	20 21 7 12 12 50/1'				3 4	4 5	qu=3.5*tsf
DRILL DRILL DRILL DRILL	DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/14/10 ENDED 6/14/10										

	BORING NUMBER	S1406	SHEET	1	OF	4				
	CLIENT	Fermi National Accelerator Laboratory								
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034								
	LOCATION	Batavia, IL N4150'27.	0"; W8815'	5.5"						
LOGGED BY SEK										

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [1 Ui	Wat 	er Con 	itent 	LL 0 50 ∕e € 5	NOTES & TEST RESULTS
745:5	<u> </u>		4" asphalt	-							
			Crushed limestone base course	SS-1	9	7					
743.8	1.8		Brown clayey sand and gravel	1.0-2.5	6	9					
			medium dense, dry		8						
			SC			İ					
				SS-2	5	4					
				3.5-5.0 10"R	3 2	Υ,					
740.0	5.5		Moist				\				
740.0	5.5		Brown silty clay, soft, moist to wet				, ,				
			CL	SS-3 6.0-7.5	4 2			22 Ç			qu=0.5*tsf
				10"R	2			ļ			
737.5	8.0										
			Gray/dark gray clayey silt, trace organics, very soft, wet		3		2	h			au-0.0*tef
			CL-ML	8.5-10.0	2		0	Ş			qu-0.0 (Si
				14"R	2						
				ST-1 10.0-12.0				22 0			qu=0.24tsf Dry
				22"R				į			density=112pcf
								į			
732.5	13.0										
732.5	13.0		Gray silty clay, seams of fine sandy				į				
			silt, soft, moist CL	SS-5	2		19				qu=1.0*tsf
				14"R	3		!				
							ļ				
			Gray silty clay, little fine to medium	SS-6	7		1 <u>6</u>				qu=1.75*tsf
			sand, médium stiff, moist	18.5-20.0 6"R	6		9				
					0						
	ING C	CONT	RACTOR Groff Testing Corp.	MARKS			WA	TER	LEVE	<u>L (ft.)</u>	
DRILL		ИЕТ⊢	OD 3.25" I.D. HSA Bor	ehole filled w	ith c	utting	js⊻	9.0'	while	drillir	ng 🛛
DRILL	ING E	QUII	PMENT CME 75	n completion			Ā	64.0'	after	drillin	g
	ILLING STARTED 6/14/10 ENDED 6/14/10										

	BORING NUMBER	S1406	SHEET	2	OF	4
	CLIENT	Fermi National Accele	rator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.0)34			
	LOCATION	Batavia, IL N4150'27.	0"; W8815'	5.5"		
LOGGED BY SEK						

ELEV.	DEРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)		Water Content 	LL 0 50 ve ₭ 4 5	NOTES & TEST RESULTS
725.5	20.0		Gray silty clay, little fine to coarse sand and gravel, hard, moist	SS-7 23.5-25.0 18"R 1	4 6 0	15 		qu>4.5*tsf
				SS-8 28.5-30.0 16"R 1	5 8 6			qu=4.0*tsf
713.5	32.0		Gray sandy silt, fine to medium sand and gravel, very stiff, medium dense, dry SM-ML	SS-9 33.5-35.0 18"R 1	4 1 6 2	2		qu=3.5*tsf
708.5	37.0		Brown gray silty clay, little fine to coarse sand and gravel, medium stiff to very stiff, moist CL	SS-10 38.5-40.0 18"R	3 1 3 6	2		qu=2.5*tsf
DRILL DRILL DRILL DRILL	.ING 0 .ING N .ING E .ING S	CONT //ETH EQUIF STAR	RACTOR Groff Testing Corp. OD 3.25" I.D. HSA PMENT CME 75 TED 6/14/10 ENDED 6/14/10	/ARKS ehole filled with n completion.	h cutting:	<u>WATER LEVE</u> s	<u>L (ft.)</u> e drillir drillin	ng g

	BORING NUMBER	S1406	SHEET	3	OF	4
	CLIENT	Fermi National Accele	rator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.0)34			
	LOCATION	Batavia, IL N4150'27.	0"; W8815'	5.5"		
LOGGED BY SEK						

						PI –	Water Cor	ntent	
		A	SOIL/ROCK	TYPE & NO	S	10	⊢−−−O− 20 ;	∆ └└ 30 40 50	NOTES
.⊳	HL 🦳	AT.	DESCRIPTION	DEPTH (FT)	ΜT	Unc	confined Cor	npressive	
티	E E E	5 T R		RECOVERY(IN)	SLC	1	Strength (「SF) ₩ 3 4 5	IESI RESULIS
705.5	(H) (H) (H) (H) (H) (H) (H) (H) (H) (H)	STI STI	Gray silty clay, little fine to medium sand and gravel, very stiff, dry	SS-11 43.5-45.0 18"R	4 7 12	1	115 1 1 1 1 1 1 1 1 1 1 1 1 1		qu=3.5*tsf
				SS-12 48.5-50.0 18"R	4 6 12		 		qu=4.0*tsf
691.5	54.0		Brown/gray fine silty sand, little coarse sand, medium dense, moist SM	SS-13 53.5-55.0 16"R	6 10 11	5 0			
688.5 <u>685.5</u>	57.0 60.0		Brown/gray silty clay, with weathered bedrock fragments CL	SS-14 58.5-60.0 16"R	6 27 48		14 0 1		
					:41.	44		<u>LEVEL (tt.)</u>	
		/IETH		enole filled wi	itn c	uttings	s⊻ 9.0°	while drillin	ng
	ING E				•		⊻ 64.0'	atter drillin	g
	ING S	STAR	TED 6/14/10 ENDED 6/14/10				⊻		

	BORING NUMBER	S1406	SHEET	4	OF	4
	CLIENT	Fermi National Accel	erator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.	034			
	LOCATION	Batavia, IL N4150'27	.0"; W8815'	5.5"		
LOGGED BY SEK						

	TES
	&
Image: Bar in the second se	RESULTS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Light gray slit, with trace tine to	
ML	
(weathered bedrock tragments)	
SS-15 31 7 qu=1.5*	tsf
63.5-65.0 50/5" Ŷ	
Grav clavev silt with trace fine to SS 16 6 10	
coarse sand and gravel, soft, moist 68.5-70.0 50/5"	
675 5 70 0	
Auger refusal on apparent bedrock	
	J
)

	BORING NUMBER	S1407	SHEET	1	OF	2
	CLIENT	Fermi National Accel	erator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053	.034			
	LOCATION	Batavia, IL N4150'26	6.9"; W8815'	06.3		
LOGGED BY SEK						

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [1 Ur	Wai 	ter Con O 0 3 ed Con ed Con ngth (1 2	$\begin{array}{c c} \hline tent & \\ \hline 0 & 40 \\ \hline 0 & 1 \\ \hline 0 &$	_L 50 5	NOTES & TEST RESULTS
745:9	0:4		4.5" asphalt Crushed limestone base course	SS-1	7	3					
743.5	2.0		Gray silty clay, little sand, medium stiff, moist CL	SS-2	o 7 5 5		`````	24			
740.0	5.5		Light brown silty clay, trace fine	8"R	6						
			sand, very soft, low plasticity, saturated CL	SS-3 6.0-7.5 14"R	8 6 6		2				qu=0.0*tsf
736.5	9.0		Medium stiff Gray/black silt and clay, some organics, very soft, wet CL-ML	SS-4 8.5-10.0 18"R	2 2 2		2	1 			qu=1.5*tsf
				SS-5 11.0-12.5 18"R	0 0 1		18 () ()				qu=0.25*tsf
732.5	13.0		Brown/gray silty clay, little fine sand, very stiff, low plasticity, moist	- ST-1 13.5-15.5 14"R			1	23 / /			qu=0.58tsf Dry density=111pcf
				SS-6 16.0-17.5 18"R	4 5 6		16 0 1				qu=3.0*tsf LL=25 PI=11
				SS-7 18.5-20.0 16"R	5 6 6						qu>4.5*tsf
DRILL DRILL DRILL	_ING C _ING N _ING E	CONT METH EQUII	RACTOR Groff Testing Corp. HOD 3.25" I.D. HSA PMENT CME 75	EMARKS prehole filled w pon completior	vith c 1.	utting	JS ⊻ ¥	<u>TER</u> 6.0'	<u>LEVEL (</u> while dr	<u>ft.)</u> rillir	ng
URILL	ING S	<u> AR</u>					<u> </u>)

	BORING NUMBER	S1407	SHEET	2	OF	2
	CLIENT	Fermi National Acce	lerator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053	3.034			
	LOCATION	Batavia, IL N4150'2	6.9"; W8815'	06.3		
LOGGED BY SEK						

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL Wa	ater Con 	itent — — — 30 4 1 1 1 1 1 1 1 1 1 1 1 1 1	LL 10 50 Ve * 4 5	NOTES & TEST RESULTS	
715.5	30.0		Brown/gray silty clay, little fine sand, very stiff, low plasticity, moist	SS-8 23.5-25.0 18"R SS-9 28.5-30.0 18"R	2 5 7 6 6 7					qu=2.5*tsf qu=3.0*tsf	
DRILL DRILL DRILL DRILL	DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 ENDED 6/11/10										

	BORING NUMBER	S1408	SHEET	1	OF	1	
	CLIENT	Fermi National Acc	elerator Labo	rato	ry		
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.034					
	LOCATION	Batavia, IL N4150'	27.0"; W8815'	07.4			

LOGGED BY SEK GROUND ELEVATION 745.0

LEV.	артн гт)	rrata	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	LOW	PL [1 Ur	Wat	er Con O 0 3 ed Con ngth (T	tent ^ 0 4 1pressi SF) →	LL 0 50 Ve	NOTES & TEST RESULTS
₽ 745:9	0:9	S.S.	4" asphalt Crushed limestone base course	SS-1 1.0-2.5	函 7 4	1		2 :	3 4	4 5	
743.0	2.0		3/4-inch limestone pieces	6"R SS-2	6 7						
739.5	5.5		Light brown/gray fine silty clay,	3.5-5.0 0"R	5 6						
			some sand, soft, moist to wet CL	SS-3 6.0-7.5 12"R	4 5 6		15 () () () () () () () () () () () () ()				qu=0.5*tsf
735.5 735.0	9.5 10.0		Brown fine silty sand, loose, wet	SS-4 8.5-10.0 16"R	4 3 3			2 1 O			qu=0.5*tsf
			End of Boring at 10.0'								
DRILL DRILL DRILL DRILL	-ING C -ING N -ING E -ING S	CONT IETH QUII STAR	RACTOR Groff Testing Corp. OD 3.25" I.D. HSA PMENT CME 75 TED 6/11/10 ENDED 6/11/10	IARKS shole filled w n completion	ith c	utting	JS ⊻ ⊻ ⊻	<u>TER</u> 9.5'	<u>LEVE</u> while	<u>L (ft.)</u> e drillir	ng

	BORING NUMBER	S1409	SHEET	1	OF	1
	CLIENT	Fermi National Acc	elerator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 210	53.034			
	LOCATION	Batavia, IL N4150	'27.1"; W8815'	09.0		

LOGGED BY SEK GROUND ELEVATION 745.0

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [1 Ur	Wat	er Con O ad Con ngth (T	tent npressiv SF) >	LL 0 50 Ve K 1 5	NOTES & TEST RESULTS
745.0 744.0	0.0 1.0		Topsoil Brown silty clay and sand/gravel Gray/black silty clay, stiff, low plasticity, moist	CL	SS-1 1.0-2.5 10"R	6 4 5		15 0- \				qu=2.5*tsf
742.0	3.0		Gray/brown mottled silty clay, medium stiff, low plasticity, moist	CL	SS-2 3.5-5.0 16"R	6 5 5		A C	0) 			qu=1.0*tsf
			Seams of fine sand and silt		SS-3 6.0-7.5 18"R	4 2 3		2	 			qu=1.0*tsf
735.5 735.0	9.5 10.0		Dark gray silty clay, low plasticity, soft, wet		SS-4 8.5-10.0 18"R	4 3 2			23			qu=1.0*tsf
			End of Boring at 10.0'	<u>UL</u> /								
DRILL DRILL DRILL DRILL	-ING C -ING N -ING E -ING S	CONT /IETH EQUII STAR	TRACTOR Groff Testing Corp. IOD 3.25" I.D. HSA PMENT CME 75 TED 6/11/10 ENDED 6/11/10	REM Bore upor	IARKS whole filled w n completior	vith c 1.	utting	<u>WA</u> JS ⊻ ⊻ <u>▼</u>	<u>TER</u> 9.5'	<u>LEVE</u> while	<u>L (ft.)</u> drillir	ng

	BORING NUMBER	S1410	SHEET	1	OF	2
	CLIENT	Fermi National Accel	erator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053	.034			
	LOCATION	Batavia, IL N4150'27	7.4"; W8815'	02.2		
LOGGED BY SEK						

ELEV.	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [1 Ui	Wat	er Con 	tent Δ pressive SF) $\#$ $\frac{3}{4}$	LL 50 e 5	NOTES & TEST RESULTS
746:5	Ø:9	X	 3" asphalt Crushed limestone base course 								
745.0	1.5		Sand and gravel fill	SS-1	7	4 Q					
				8"R	5	, N					
743.5	3.0		Light brown/gray silty clay, little fine								
			to medium sand, soft, moist CL	SS-2 3.5-5.0	3 2		(1 9	9			
				0"R	4						
				<u> </u>	2		2	1			au=0.25*tef
				6.0-7.5 12"R	23			þ l			qu-0.20 toi
738.5	8.0										
			Gray clayey silt, very soft, low plasticity, wet	SS-4	2			22			LL=20
			IVIL	8.5-10.0 18"R	2 2			Ŷ			PI=4
				SS-5 11.0-12.5	1		2	b			
				18"R	1			21			
733.0	13.5			12.5-14.5 26"R			-	þ I			du=0.59(5) Dry densitv=115pcf
			Gray silty clay, trace fine to coarse sand, very stiff, moist				l	ĺ			
			UL								
							i				
				SS-6	6		15 ¢				qu=4.0*tsf
				18"R	7						
DRILL	_ING (CONT	RACTOR Groff Testing Corp.	EMARKS			WA	TER	LEVEL	. (ft.)	
		NETH	IOD 3.25" I.D. HSA	orehole filled w	vith c n.	utting]s⊻	9.0'	while	drillir	ng
DRILL ו וופח					••		Į ▼				
							<u> </u>)

	BORING NUMBER	S1410	SHEET	2	OF	2
	CLIENT	Fermi National Accele	rator Labo	rato	ry	
PATRICK ENGINEERING INC.	PROJECT & NO.	IARC Building 21053.0	34			
	LOCATION	Batavia, IL N4150'27.	4"; W8815'	02.2		
LOGGED BY SEK						

GROUND ELEVATION 746.5 Water Content -∕∆ 40 」 LL SAMPLE -NOTES SOIL/ROCK 50 BLOW COUNTS 30 20 TYPE & NO. STRATA DEPTH (FT) & Unconfined Compressive Strength (TSF) * ELEV. DEPTH (FT) DESCRIPTION TEST RESULTS RECOVERY(IN) 2 5 3 726.5 20.0 Gray silty clay, trace fine to coarse SS-7 23.5-25.0 18"R 1**5** 0 sand, hard, low plasticity, moist 5 7 qu>4.5*tsf 9 SS-8 28.5-30.0 3"R 1<u>4</u> 9 9 12 716.5 30.0 End of Boring at 30.0'

 DRILLING CONTRACTOR
 Groff Testing Corp.

 DRILLING METHOD
 3.25" I.D. HSA

 DRILLING EQUIPMENT
 CME 75

 DRILLING STARTED 6/11/10
 ENDED 6/11/10

PATRICK ENGINEERING INC. CLENT PROJECT & NO. LOCATION Fermi National Accelerator Laboratory Records and LocATION LOGGED BY SEK GROUND ELEVATION SEK GROUND ELEVATION 746.0 Construction Transfer SOLL/ROCK DESCRIPTION SAMPLE SAMPLE SAMPLE DESCRIPTION SAMPLE Transfer Mater Content Transfer L Transfer NOTES Notes Sample DESCRIPTION 743.6 2.5 SOL/ROCK DESCRIPTION SAMPLE SAMPLE Transfer Transfer NOTES Transfer NOTES Transfer 743.6 2.5 SOL/ROCK DESCRIPTION SAMPLE Transfer SAMPLE Transfer Transfer NOTES Transfer NOTES Transfer 743.6 2.5 SOL/ROCK DESCRIPTION SAMPLE Transfer SAMPLE Transfer Transfer NOTES Transfer NOTES Transfer 743.6 2.5 Gray silty clay, some sand and gravet, medium stiff, low plasticity, moist SS-5 Fill SS-5 Till SS-5 Till SS-5 Till SS-5 Till SS-5 Till SS-5 Till SS-5 Till SS-5 Till SS-6 Till SS-7 Till SS-7					BORING	NUMBER	9	S1411		SHEET	1 OF 2
PROJECT & NO. IARC Building 21053.034 Batavia, IL NA150'27.5"; W8815'01.3" LOGGED BY SEK GROUND ELEVATION 746.0 SOLLROCK SMPLE DESCRIPTION SMPLE TYPE & NO. Mater Content in the control of the compressive Strength (TFF) ** NOTES Test RESULTS 748.6 24 SOLLROCK SMPLE TYPE & NO. Mater Content in the control of the compressive Strength (TFF) ** NOTES Test RESULTS 748.6 24 Gray silty clay, some sand and gravel, medium stiff, low plasticity, moist SS-1 10'R 5 5 788.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff, low plasticity, moist SS-4 110'R 4 4 794.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-4 114'R 4 4 794.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-4 12'R 5 5 4 794.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 11.0-12'R 5 5 4 794.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-6 12'R 2 16 16 16 16	В				CLIENT		Ferm	i Nati	onal Acc	elerator Labo	oratory
LOCATION Batavia, IL NA150'27.5"; W881'501.3" LOGGED BY SEK GROUND ELEVATION 746.0 ROUND ELEVATION 746.0 SOLL/ROCK SAMPLE DESCRIPTION Particle SOLL/ROCK DESCRIPTION SAMPLE RECOVERVIN) Resource SAMPLE Service Particle SOLL/ROCK DESCRIPTION SSS-1 10.2:5 Particle SSS-1 10.2:5 Particle SSS-1 10.2:7 Particle SSS-1 10.2:7 Particle SSS-1 10.2:7 Particle SSS-3 10.7:7 Particle SSS-4 10.7:7 Particle SSS-5 10.1:2:7 Particle SSS-6 11.0:1:2:7 Particle SSS-6 11.0:1:2:7 Particle SSS-7 10.7:5:5 Particle SSS-7 10.7:5:5:7		AIR		ENGINEERING INC.	PROJEC	CT & NO.	IARC	Buile	ding 210	53.034	
LOGGED BY SEK GROUND ELEVATION 746.0 SolL/ROCK SAMPLE Trees No. Fig. 20 Trest					LOCATI	ON	Batav	via, IL	. N4150'	'27.5"; W8815	6'01.3"
GROUND ELEVATION 748.0 Solution Solution Solution Solution Triss Solution <t< td=""><td>LOGG</td><td>ED B</td><td>Y</td><td>SEK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	LOGG	ED B	Y	SEK							
Solu/ROCK DESCRIPTION SAMPLE TYPE & NO. DESCRIPTION Water Content (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	GROL	IND E	LEVA	ATION 746.0							
Solu/Rock DESCRIPTION Solu/Rock DESCRIPTION Solure TYPE & NO. Description NOTES Description NOTES Solure Solution 743.5 2.5 3.6" asphalt Crushed limestone base course 5 5 5 7 743.5 2.5 Gray sity clay, some sand and gravel, medium stiff, low plasticity, moist 5 5 5 5 738.0 8.0 Brownigray-brown silty clay, some fine to coarse sand, liftig gravel, moist Fill 5 5 738.0 8.0 Brown fine to coarse sand and gravel, some silty clay, some fine to coarse sand, liftig gravel, moist 5 8 738.0 8.0 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.0 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.0 8.0 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.0 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.0 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.1 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 738.5 11.5 Brown clayey sand, with gravel, loose, wet 5								ы	Water C	Content	
Solution DESCRIPTION DESCRIPTION DESCRIPTION 748.0 0.9 3.5° asphalt TEST RESULTS 743.5 2.5 Gray sity clay, some sand and gravel, modulin stiff, low plasticity, moist 5 743.6 2.5 Gray sity clay, some sand and gravel, medium stiff, low plasticity, moist 5 743.6 1.0 2.5 Gray sity clay, some sand and gravel, medium stiff, low plasticity, moist 5 743.6 1.5 Brown/gray-brown sity clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 5 4 734.5 11.5 Brown fine to coarse sand and gravel, medium stiff/loose, moist 5 5 734.5 11.5 Brown sandy, sity clay, little gravel, medium stiff/loose, weit 5 5 734.5 11.5 Brown fane to coarse sand and gravel, some clay, medium dense, moist 5 5 734.5 11.5 Brown sandy, sity clay, little gravel, medium dense, moist 5 5 734.5 11.5 Brown sandy, sity clay, little gravel, medium dense, moist 5 5 734.6 11.5 Brown sandy, sity clay, little gravel, medium dense, moist 5 5 734.5 11.5 Brown sandy, sity clay, little gravel, medium dense, moist 5 5 734.5 18 Brown sandy, si			51	SOIL/ROCK			0		□C 10 20		NOTES
Bit State Bit State Bit State Itest Resource with (15F) is a strength (15F) is a strengt (15F) is a strengt (15F) is a strength (1	. ⊳	TH (ATZ	DESCRIPTION		DEPTH (FT)	MLN	U	nconfined (Compressive	&
m 1	E E E	ET	L L	BEGORI HON		RECOVERY(IN			Strengt	h(TŚF) ₩	IEST RESULTS
7437 cs Crushed imestone base course 58-1 5 5 7435 2.5 Gray silly clay, some sand and gravel, medium stiff, low plasticity, moist 58-2 5 7 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, liftle gravel, medium stiff/loose, moist 58-4 2 18 18 738.1 11.5 Brown fine to coarse sand, liftle gravel, medium dense, moist 5 5 8 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11 12 11 12 11 12 11 11 12 11 </td <td>746 0</td> <td>60</td> <td>01</td> <td>3 5" asphalt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	746 0	60	01	3 5" asphalt							
743.5 2.6 Gray silty clay, some sand and gravel, medium stiff, low plasticity, moist 5 5 5 783.0 8.0 FILL SS-2 3.5.5.0 4 2 2 788.0 8.0 Brown/gray-brown sity clay, some fine to coarse sand, liftle gravel, medium stiff/loose, moist SS-3 6.0.7.5 8 8 6.0 10 784.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, medium stiff/loose, moist 11.0.12.5 14/R 8 6 1 738.0 8.0 Brown fine to coarse sand and gravel, some clay, medium dense, medium stiff, moist to wet fill 11.0.12.5 13.5.7 8 6 6 738.1 11.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fill SS-6 13.5.7 2 3 10 738.0 18.0 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fill SS-6 13.5.7 2 3 10 732.5 18.0 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fill SS-7 13.5.70 3 4 9 738.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 18.5.70 3 4 9 78.0 18.0 SS-7 10.5.70 3 4 9 10 78.0 18.0 SS-7 10.5.70 3 4 9 78.0 18.0 SS-7 10.5.70 3 4 <	145:1	0:5		Crushed limestone base cour	se	-					
743.5 2.5 Cray silty clay, some sand and gravel, medium stiff, low plasticity, moist 10°R 7 7 4 10°R 7 7 4 10°R 7 7 4 10°R 7 7 4 10°R 7 7 10°R 7 7 4 2 10°R 7 7 4 2 10°R 7 7 10°R 7 10°R 7 10°R						SS-1	5	5			
743.5 2.6 Gray silty clay, some sand and gravel, medium stiff, low plasticity, moist 7 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 7 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 738.0 11.6 Brown fine to coarse sand and gravel, some clay, medium dense, moist 13 738.0 11.6 Brown fine to coarse sand and gravel, some clay, medium dense, moist 11.0-12.5 738.0 11.6 Brown fine to coarse sand and gravel, some clay, medium dense, moist 11.0-12.5 738.0 Brown fine to coarse sand and gravel, some clay, medium dense, moist 13.5-15.0 738.0 Brown fine to coarse sand and gravel, some clay, medium dense, moist 13.5-15.0 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 728.0 18.0 Chatter sheared office augress on that to coarse sand and gravel, loose, wet SS-7 728.0 18.0 REMARKS WATER LEVEL (ft.) 728.0 18.0 S25" 3 728.0 18.0 S25" 3			•••			1.0-2.5	10	9			
738.0 2.0 Cray silly clay, some sand and gravel, medium stiff, low plasticity, moist FILL SS-2 3.5-5.0 4 2 18 738.0 8.0 Brown/gray-brown silly clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 5S-4 4'R 4 5S-5 12 734.5 11.6 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 11.0-12.5 5 8 6 732.5 13.6 Brown sandy, silty clay, little gravel, medium stiff, loose to wet file to coarse sand and gravel, some clay, medium dense, moist SS-6 11.0-12.5 2 12 732.5 13.6 Brown sandy, silty clay, little gravel, medium stiff, moist to wet file. SS-6 13.5-15.0 2 2 3 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 18.5-20.0 3 4 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 18.5-20.0 3 4 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 18.5-20.0 3 4 PRILLING CONTRACTOR Groff Testing Corp. REMARKS Brownehpt filled with cuttings upon completion. WATER LEVEL (ft.) v	7/3 5	25	5 1			10"R	7				
gravel, medium stiff, low plasticity, moist SS-2 SS-2 qu=0.75*tsf 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 qu=1.5*tsf 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8.5-3 6.0-7.5 7 734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-4 5 6 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet filled with cutting sampling. SS-6 2 2 722.5 13.5 Brown clayey sand, with gravel, loose, wet SS-7 3 9 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 4 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 4 4 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 4 4 728.0 18.0 Strint D	743.5	2.5		Gray silty clay, some sand an	d		1				
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 4 18 qu=0.75*tsf 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 10 12 738.0 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 5 6 732.5 11.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet 11.0.12.5 14"R 5 6 732.5 13.5 Brown clay, silty clay, little gravel, medium stiff, moist to wet SS-6 13.5.15.0 2 2 732.0 18.0 Brown clay esting to coarse sand and gravel, some clay, medium dense, moist SS-6 13.5.15.0 2 2 732.6 11.6 Brown sandy, silty clay, little gravel, medium stiff, moist to wet loose, wet SS-6 13.5.15.0 2 2 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 18.5-20.0 3 9 728.0 18.0 Start point clayey sand, with gravel, loose, wet SS-7 18.5-20.0 3 9 7 REMARKS Brown clayey sand, with gravel, loose, wet Start point clayes Start point clayes 7 11.00 Start point clayes Start point clayes Start point clayes				gravel, medium stiff, low plast	icity,						
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 18 18 734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5S-4 4 12 734.5 11.5 Brown sandy, silty clay, little gravel, some clay, medium dense, moist 5S-6 10.12.5 5 6 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet FILL SS-6 13.5.15.0 2 738.0 11.5 Brown sandy, silty clay, little gravel, medium dense, moist SS-6 13.5.15.0 2 732.5 13.5 Brown clay sandy, silty clay, little gravel, medium stiff, moist to wet FILL SS-6 2 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 728.0 18.0 Brown Clayey sand, with gravel, loose, wet SS-7 3 9 728.0 18.0 Brown Clayey sand, with gravel, loose, wet SS-7 3 9 728.0 18.0 Brown Clayey sand, with gravel, loose, wet SS-7 3 9				moist		SS-2	4		`18		qu=0.75*tsf
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 5S-3 8 13 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 12 12 12 734.5 11.5 Brown fine to coarse sand and gravel, medium dense, moist 5S-6 5 6 7 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet FILL SS-6 2 16 10 12 722.5 13.5 Brown clay ey sand, with gravel, medium stiff, moist to wet FILL SS-6 2 16 10.0 0					FILL	3.5-5.0	2		9		
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 5S-4 4 12 734.5 11.5 Brown fine to coarse sand and gravel, medium stiff/loose, moist FILL SS-6 10.012.5 5 6 734.5 11.5 Brown sandy, silty clay, little gravel, moist SS-6 11.0.12.5 5 6 1 732.5 13.5 Brown sandy, silty clay, little gravel, moist to wet fill SS-6 13.5-15.0 2 16 732.5 13.5 Brown clayey sand, with gravel, loose, wet SS-7 3 2 16 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 3 9 DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.28" LD. HSA DRILING EQUIPMENT CMET 75 3 9 DRILLING STARTEP 6/11/10 FMET 75 Borohoe filled with cuttings pro completion. Y Y						12"R	2				
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 4 13 12 qu=1.5"tsf 738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist SS-4 4 5 4 738.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 5 6 4 5 4 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet FILL SS-6 2 2 4 4 5 4 6 7 6 9 9 9 0							1		i i		
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 8 13 12 qu=1.5"tsf 738.0 8.0 Brown fine to coarse sand, little gravel, medium stiff/loose, moist SS-4 4 12 qu=1.5"tsf 734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 5 6 4 4 12 qu=1.5"tsf 732.5 13.5 Brown sandy, silty clay, little gravel, moist to wet filled with cutting gravel, some clay, medium dense, moist SS-6 13.5-15.0 2 2 14"R 4 5 6 9 qu=1.0"tsf 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 3 9 2 18.0 Chatter sheared off two augers on other stift to to tast sampling. 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 4 4 5 5											
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 6.0-7.5 8 7 12 qu=1.5"tsf 738.0 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-4 4						SS-3	8		13		
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist 9						6.0-7.5	8		ΙΥ Ι		
738.0 8.0 Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist SS-4 4 12 qu=1.5*tsf 734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist FILL SS-5 6 4 5 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fill SS-6 2 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 4 5 6 4 5 6 4 5 6 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td>4"R</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						4"R	1				
Brown/gray-brown silty clay, some fine to coarse sand, little gravel, medium stiff/loose, moist SS-4 4 12 734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 5 6 732.5 13.5 Brown sandy, silty clay, little gravel, moist to wet fine to coarse to gray at 15.0' SS-6 2 11.0-12.5 5 6 732.5 13.6 Brown sandy, silty clay, little gravel, medium dense, moist to wet fill SS-6 2 16 qu=1.0*tsf 732.6 13.6 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fill SS-6 2 13.5-15.0 2 2 16 Qu=1.0*tsf 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9	738.0	8.0					1		i		
rate fine to coarse sand, little gravel, medium stiff/loose, moist SS-4 12 qu=1.5*tsf rate FILL FILL SS-5 5 6 4 12 rate gravel, some clay, medium dense, moist SS-5 5 6 4 10°R 4 10°R rate gravel, some clay, medium dense, moist SS-6 11.0-12.5 8 6 4 10°R qu=1.0*tsf rate Brown sandy, silty clay, little gravel, moist SS-6 13.5-15.0 2 2 16 7 7 6 7				Brown/gray-brown silty clay, s	some						
734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 5 6 10°R 5 6 732.5 13.5 Brown sandy, silty clay, little gravel, medium dense, moist 14°R 6 16°R 16°R 16°R 10°L				fine to coarse sand, little grav	el,	SS-4	4		12		qu=1.5*tsf
734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 11.0-12.5 5 6 9 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet filled SS-6 2 16 9 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet filled SS-6 2 16 9 732.5 13.5 Brown clayey sand, with gravel, loose, wet SS-7 3 9 9 16 0 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 3 9 18.5, continued sampling. DRILLING CONTRACTOR Groff Testing Corp. DRILLING STARTED 6/11/10 SS-7 3 9 3 9 18.5, continued sampling. DRILLING STARTED 6/11/10 ENDED 6/11/10 ENDED 6/11/10 ENDED 6/11/10 SC				medium sunnoose, moist	FILL	8.5-10.0	4		Ϋ́		
734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 58.6 6 9							5		ί I		
734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 58.6 5 6 9 18.0 <											
734.5 11.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist SS-5 5 9 9 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fILL SS-6 2 2 16 9 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet fILL SS-6 2 2 16 9 732.5 18.0 Grades to gray at 15.0' FILL SS-7 3 9 2 18.0 Chatter sheared off two augers on obstruction at 18.0, Offset 3.0' east; blind to 18.5', continued sampling. 18.0, Offset 3.0' east; blind to 18.5', continued sampling. 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 3 9 DRILLING CONTRACTOR Groff Testing Corp. DRILING STARTED 6/11/10 REMARKS Borehole filled with cuttings VATER LEVEL (ft.) DRILLING STARTED 6/11/10 FNDED 6/11/10 FNDED 6/11/10 VATER LEVEL (ft.) V							4				
732.5 13.5 Brown fine to coarse sand and gravel, some clay, medium dense, moist 14"R 6 732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet SS-6 2 16 qu=1.0*tsf Grades to gray at 15.0' FILL 13.5-15.0 12"R 3 1 1 Chatter sheared off two augers on obstruction at 18.0'. Offset 3.0' east; blind to 18.5', continued sampling. 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 3 1 1 18.5', continued sampling. DRILLING CONTRACTOR Groff Testing Corp. DRILLING EQUIPMENT CME 75 REMARKS WATER LEVEL (ft.) V V DRILLING STARTED 6/11/10 FIDED 6/11/10 FIDED 6/11/10 V V V V	734.5	11.5				SS-5	5	ğ			
732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet SS-6 2 1<				Brown fine to coarse sand and	d	11.0-12.5 14"R	6				
732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet SS-6 2 2 16 qu=1.0*tsf Grades to gray at 15.0' FILL 12"R 3 146 Chatter sheared off two augers on obstruction at 18.0'. Offset 3.0' east; blind to 18.5', continued sampling. 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT REMARKS WATER LEVEL (ft.) DRILLING STARTED 6/11/10 FNDED 6/11/10 REMARKS WATER LEVEL (ft.)				moist	ense,		ļ	,			
732.5 13.5 Brown sandy, silty clay, little gravel, medium stiff, moist to wet SS-6 2 13.5-15.0 2 14.6 qu=1.0*tsf Grades to gray at 15.0' FILL 12"R 3 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 </td <td></td> <td></td> <td></td> <td>molet</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				molet							
Brown sandy, silty clay, little gravel, medium stiff, moist to wet SS-6 2 13.5-15.0 2 12"R 3 1 <t< td=""><td>732.5</td><td>13.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0*1.5</td></t<>	732.5	13.5									4.0*1.5
728.0 18.0 FILL 10.3 (10.0) 2 1 <td< td=""><td></td><td></td><td></td><td>Brown sandy, silty clay, little g</td><td>jravel,</td><td>SS-6 13 5-15 0</td><td>2</td><td></td><td></td><td></td><td>qu=1.0^tst</td></td<>				Brown sandy, silty clay, little g	jravel,	SS-6 13 5-15 0	2				qu=1.0^tst
728.0 18.0 Grades to gray at 15.0' Image: construction of two augers on obstruction at 18.0'. Offset 3.0' east; blind to 18.5', continued sampling. 728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA REMARKS WATER LEVEL (ft.) DRILLING EQUIPMENT CME 75 Borehole filled with cuttings upon completion. Image: construction of the start				mediam stin, moist to wet	FILL	12"R	3				
728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 Image: since the since				Grades to gray at 15 0			-				Chatter shoored
728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 Image: sampling. DRILLING CONTRACTOR Groff Testing Corp. SS-7 3 9 Image: sampling. DRILLING METHOD 3.25" I.D. HSA Brown clayey for the sampling. Image: sampling. Image: sampling. DRILLING EQUIPMENT CME 75 Borehole filled with cuttings upon completion. Image: sampling. Image: sampling. VATER LEVEL (ft.) Image: sampling. Image: sampling. Image: sampling. Image: sampling.				Grades to gray at 15.0							off two augers on
728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 18.0 18.0'. Offset 3.0' east; blind to 18.5', continued sampling. DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA 8"R 4 WATER LEVEL (ft.) DRILLING EQUIPMENT CME 75 Borehole filled with cuttings upon completion. Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) V Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) Vater Level (ft.) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>obstruction at</td></td<>											obstruction at
728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 Image: sampling. DRILLING CONTRACTOR Groff Testing Corp. 8"R 4 Image: sampling. Smpling. DRILLING METHOD 3.25" I.D. HSA Borehole filled with cuttings Image: sampling. Image: sampling. DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 FNDED 6/11/10 Image: sampling. Image: sampling.											18.0'. Offset 3.0'
728.0 18.0 Brown clayey sand, with gravel, loose, wet SS-7 3 9 Sampling. DRILLING CONTRACTOR Groff Testing Corp. 8"R 4 WATER LEVEL (ft.) DRILLING METHOD 3.25" I.D. HSA Borehole filled with cuttings Vater Level (ft.) DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 FNDED 6/11/10									/		east; blind to
Image: Non-State of the state of the st	700 0	10.0							i		sampling.
Driver outgrey stand, with grown, loose, wet SS-7 18.5-20.0 8"R 3 4 9 4 DRILLING CONTRACTOR Groff Testing Corp. 8"R 4 WATER LEVEL (ft.) DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 Borehole filled with cuttings upon completion. WATER LEVEL (ft.)	/28.0	18.0		Brown clavey sand with grave					¥		
DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 FNDED 6/11/10				loose, wet	<i></i> ,	<u>SS-7</u>	3	9			
Brilling CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 FNDED 6/11/10						18.5-20.0	3	\$)		
DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 FNDED 6/11/10						8"R	4				
DRILLING CONTRACTOR Groff Testing Corp. DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 ENDED 6/11/10			KXXX		\neg						
DRILLING METHOD 3.25" I.D. HSA DRILLING EQUIPMENT CME 75 DRILLING STARTED 6/11/10 ENDED 6/11/10	DRILL	ING C	CONT	RACTOR Groff Testing Corp.	REM	1ARKS			WATE	R LEVEL (ft.)	
DRILLING EQUIPMENT CME 75	DRILL	ING N	ИЕТН	OD 3.25" I.D. HSA	Bore	ehole filled v	with c	uttin	gs⊽		
DRILLING STARTED 6/11/10 ENDED 6/11/10				PMENT CME 75	upo	n completio	n.		Ţ		
				TED 6/11/10 ENDED 6/11/10					± ▼		

					BORING NUMBER CLIENT PROJECT & NO. LOCATION	Ferm IARC Batav	S1411 SHEET ni National Accelerator Lab Building 21053.034 via, IL N4150'27.5"; W881	2 OF 2 oratory 5'01.3"
LOGG GROL	ED B	Y LEV/	SEK ATION	746.0				
EV.	PTH T)	RATA		SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO DEPTH (FT	 OM NTS	PL Water Content PL 0 20 30 40 50 Unconfined Compressive Strength (TSE) *	NOTES & TEST RESULTS

ELEV	DEPI (FT)	STRA	DESCRIPTION		RECOVERY(IN)	BLOW		Strength (T	$SF) \times 4$	5	TEST RESULTS
726.0	20.0		Brown clayey sand and gravel, loose, moist to wet FIL Wood pieces Trace wood pieces End of Boring at 30.0'	L	SS-8 23.5-25.0 4"R 28.5-30.0 6"R	3 2 2 2 2	80				
DRILL DRILL DRILL DRILL	.ING (.ING N .ING E .ING S	CONT /IETH EQUIF STAR	RACTOR Groff Testing Corp. OD 3.25" I.D. HSA PMENT CME 75 TED 6/11/10 ENDED 6/11/10	REM Bore upor	ARKS hole filled w completion	rith c	uttings <u>1</u> 2 2	NATER ℤ ℤ	LEVEL (<u>ft.)</u>	

LOCAL SOIL DESCRIP.	TION TERMINOLOGY	GRAPHIC LOG (SYMBOLS (OPTIONAL)	~
Soils are visually identified and classified on the b according to the Unified Soil Classification System	oring logs and described in this report with the following modifications:	Asphalt Co	ncrete Coal Coal Coal	orly aded
RELATIVE DENSITY OF GRANULAR SOILS	CONSISTENCY OF COHESIVE SOILS		Sa	nd (SP)
Very Loose 0 to 4 Very Loose 0 to 4 Very 2005 4 to 10	Very Soft 2 0 to 0.25 Soft 2 0 to 0.25 Min		ary well Stit Stit Stit and a sti	iy Sand V)
Medium Jense 10 0 00 Dense 30 to 50 Very Dense 50 to 80 Extremely Dense 80+	Andourn Stiff B-15 1.0 0.10 Stiff 8-15 1.0 to 2.0 vary Very Stiff 15-30 2.0 to 4.0 Hard 30 4.0 to 8.0	Clayey Clayed Cla	yey avel (cc)	t (ML)
 N (blows/foot) are based on field measurements PARTICLE SIZES 	Very Hard 8.0+ and not corrected. *SOIL MOISTURE	Elaatic Sitt (MH) (CL	y Clay Low Hig ML) Clay (CL) M Hig Clay (CL) Clay Clay	th Isticity Iy (CH)
Components Size or Sieve No. Boulders – Over 12 in. Cobbles – 3 to 12 in. Gravel – 64 to 3 in.	Dry - Dry to touch, dusty Dry - Dry to touch, dusty Moist - Moist to touch, damp, no visible water Wet - Wet to touch, soil is usually below	Low Low Pleaticity Org	h eticity <u>14 Peat</u> Peat <u>245 3</u> Top addice <u>12 14</u> (Pt) <u>12 14</u>	liosd
 – Fine No. 4 to 3/4 in. Sand – Соатзе No. 10 to No. 4 – Medium No. 40 to No. 10 – Fine No. 200 to No. 40 	the water table aturated - Free Water in Sample		nestone Shale Sa	ndstone
Fines – Below No. 200 (Silt and Clay) * RELATIVE PROPORTIONS	* RELATIVE PLASTICITY	Dolomite	tstone end and and and control of the stone	
(IN LIEU OF "WITH") Descriptive Term X By Weight Trace/Occ. 1 to 10 Little 20 Some 20 to 30	<u>Descriptive Term</u> <u>Liquid Limit</u> Low Medium {Lean} 0 to 30 Medium {Lean} 30 to 50 High (Fat) >50	NOTE: Graphic log symbol Graphic symbols an descriptions and ty	s may or may not be shown on the logs. s shown for convence. The typed sail ped water level data are considered more	
And** 30 to 50 **Alternatively "sandy" or "gravelly." "Silty clay or "Fat" Clay with the appropriate plasticity mo	" may be utilized in lieu of "Lean" difier.	exact than the graph watter L	phic symbols. .EVEL SYMBOLS	
NOTE: Visual classifications o	re approximate.	Mate Mate Wate	er Level, During Drilling er Level, After Drilling	<u></u>
		Vate Wate	er Level, After 24 Hours	
PROJECT & MUKER PROJECT & MUKER	R B-2-09 SHEFT I OF 12). LBNE Investigation C II	*The water level denotes the level represent the water level in a sp	encountered in the borehole and may not lecific layer or strata.	
LOGIZED BY SEX CROUND ELEVATION 742.8	retition, but was it.	SOI Abbreviations for colors vary between	L COLOHS loggers. In general the following abbrevi	ations
. V313 (111) ATATT3 (211) ATATT3 (211) ATATT3 S0(110) ATATT3 ATATT3 S0(110) ATATT3 ATA	WAVE From the second of the second se	are used: BLK = Black GR BRN = Brown GRN YEL = Yellow DK	= Gray BL = Blue = Green PK = Pink = Dark STR = Strong	
Reven afty city, liftle fine to medium send, afth, molet UMPRD SOU.	Comparing Product Result	0LV = Olive ORG Mottling is a rust colored staining us and resulting from the depositing or materials. Mottling is typically found have flucturated in the past.	 Crange Crange Sually observed along cracks and fissures precipitation of iron and ather natural within the zone where groundwater levels 	
	17.72 55 5 5 6 € 5 6 € 5 6 5 6 5 6 6 5 6 6 5 6 6 6 6	ROCK QUA	LITY DESIGNATION	
Total 14 Total Person ally sand life day, freed- total and the set Total DEPTH of CHWORE IN STRVIX SI 6	SS-3 15 10 ⁻⁷ .5 10 ⁻⁷ .8 10 ⁻⁷ .8 2 Generate 8 2 Generate 18	The Rock Quality Designation (Deers, rock quality as reported here was ob core recovered in each run, counting inches (10 cm) in length or longer of	et. al., 1969) method of determining stained by summing up the total length of 1 only those pieces of core which are four and which are hard and sound. The sum	
medium affit, most fine and, medium affit, most to vet UNL 8.	16120 6 	is then represented as a percentage is broken by handling or by the drill fitted together and counted as one length of four inches (10 cm). RQC	over the length of the ruh. If the core ing process, the fresh broken pieces are piece provided that they form the requisite 3 is reported as a percentage.	
732.3 1124 ILE Grow ally day, have fine to medium send, low ploaticity, very attiff, mold 1, 11,	185-5 5-6 1872.5 1972.5 1975.5 1975.5 1975.5 1975.5 1975.5	Relation of RQD ($\frac{RQD}{25}$) = 25	and Rock Quality <u>Description of Rock Quality</u> Very Poor	
SWIFE INTERNAL AND RECOVERY		25 - 50 50 - 75 75 - 90 90 - 100	Fair Good Excellent	
	CGTIONINGCONTRACT CONTRACT ON	NOTE: Recovery denote recovered in a reported as a p	ed as REC=, is the length of core run divided by the length of the run, percentage.	
	Dry another 11.5 2perf		SOIL	
	SS-7 2 0 <th0< th=""> <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<></th0<>	DESCRIP	TION TERMINOLOG	≻ -
DIRLING CONTRACTOR DIRLING METHOD 3.25° i.D. HSA/NO DIRLING EXUIPADIT CME 75 DIRLING STARTD 12/17/09 ENDED 12/30/09 DIRUK	WATER LEVEL (14.) 2 10.0' while drilling OSSERVATIONS 2 80.0' ofter drilling		CRAPHIC LOG SYMBOLS TO ROCK CORE DATA AMPLE BORING LOG	5

G:/CAD/Soil-Des-Term/Soil-Des-Term-2010.dwg EJB 07-06-10

APPENDIX C

LABORATORY TEST RESULTS LABORATORY DATA

Laboratory Test Results	IAKC Building - Fermi National Accelerator Laboratory - Batavia, Illinois
-------------------------	---

Density - nit weight	ASTM D		ρλ	;	113.9	,		;	112	1	111	115	1	1		,	1		1					
UC I Strength u	STM D2166	no	tsf	;		,	-		0.24	1	0.58	0.59		1			1		1	,	1	:	1	
Loss on Ignition			%		1	2.0		;	1	1	1		Section 2	:	1	1		;	1		1	1	1	
		Clav	%	10.7	1		1	10.1		1	1122-12-13	,	1	1	1	1	1	,		,	1	1	10.1	1
cle e	22/D421	Silt	%	55.6	,		1	61.1	1	1	0	1	1	1	1211C- 1011247	1	,	;		,	1	1	1	
Parti Siz	ASTM D4	Sand	%	33.7	-	,	1913 — 1945	23.1	1	1		1		1		1	1		State - Shu			1	1	1
		Gravel	%	0.0	100 - 10 CO	;	etter is - moane d	5.6	t	1	2001 - COLU2	;	1			1		,	単語の「一」は第	,	1	1	1	
		٩.	%	1	THE OWNER THE PARTY OF	,	∞	1	1	11	STATE - CRASS	1	4			1	The state	1	1	,	1	1	6401-50-50	1
Atterberg Limits	STM D4318	Ъ	%	1	1	ł	13	1		14	a aller - Doute	1	16	1	日日日日の	1	1	1	1.00	,	1	1		
	Ä		%	1	1	1	21	1	-	25	1	-	20		-	1	11 di - 3840	1			1 Million Street	:	-00	1
Moisture Content	ASTM D2216	M	%		24	21		1	22		23	21	AL 1000000000000000000000000000000000000	1			1	1				-	a 1 2 4 10 4 10 1 20 1	-
USCS Soil Classification	ASTM D2487			Brown fine sandy silt (SM)	Dark gray silty ciay/clayey silt (CL-ML)	Dark gray silty clay (CL)	Dark gray silt clay (CL)	Dark gray clayey silt (ML)	Dark gray clayey silt (ML)	Brown/gray silty clay (CL)	Brown/gray silty clay (CL)	Gray silty clay (CL)	Gray clayey silt (ML)											
	rd for Lab Test	eter	Sample Depth (ft)	6-7.5	11-13	8.5-10	11-12.5	13.5-15	10-12	16-17.5	13.5-15	12.5-14.5	8.5-10											
	Applicable Standa	Param	Sample Identification	B-1-10 SS-3	B-1-10 ST-1	B-2-10 SS-4	B-2-10 SS-5	B-2-10 SS-S	B-3-10 ST-1	B-4-10 SS-6	B-4-10 ST-1	B-7-10 ST-1	B-7-10 SS-4			B - 1 (S1404)	B-2 (S1405)	B-3 (S1406)	B-4 (S1407)	B-7 (S1410)				

DENSITY-UNIT WEIGHT DETERMINATION

Client: Patrick Engineering Project: IARC Building WEI Job No: 190-18-85

Analyst name: M. de los Reyes Test date: 6/21/2010

	B-1-10 (11.0-13.0 ft)
Water content determination	
Mass of tare and wet soil (g) $W_w =$	330.11
Mass of tare and dry soil (g) $W_d =$	282.65
Mass of tare (g) W_t =	83.85
Water content w =	24%

Density--Unit Weight

Dry Unit Weight (pcf) γ_d =	113.94	
Bulk Unit Weight (pcf) y =	141.14	
Total weight (g) W =	246.260	
Average height (in) H =	1.217	
H ₃ =	1.204	
H ₂ =	1.239	
Height measurements (in) H ₁ =	1.208	
Average diameter (in) D =	2.637	
D ₃ =	2.584	
D ₂ =	2,729	
Diameter measurements (in) $D_1 =$	2.599	

Prepared by: M. dulis Muys Date: 6/23/10 Checked by: Date: 06/25/0

Organic Content - Loss On Ignition ASTM D 2974, Method C

Client:	Patrick Engineering	Analyst:	M. de los Reyes
Project:	IARC Building	Date Received:	6/17/2010
WEI Job:	190-18-85	Date Tested:	6/17/2010
Sample ID/Location:	B-2-10 (8.5-10.0 ft)	Description: G	ray Silt
Type/Condition:	SS		•
Testing Furnace Temp °C.:	440		

Moisture Content	Wet soil + tare (g)	Dry Soil + tare (g)	Tare mass (g)	w (%)
oven-dry method	30.18	26.86	11.05	21

Ash Content	Dry Soil + tare (g)	Ash + tare (g)	Tare mass (g)	Ash Content (%)
Loss On Ignition	26.86	26.54	11.05	98

Organic Content (%)= 2.0

Notes:

Prepared by: <u>M. de las flugs</u> Date: <u>6/23/10</u> Checked by: <u>Aus</u> Date: <u>06 (25/16</u>

LIQUID LIMIT, PLASTIC LIMIT, and PLASTICITY INDEX

AASHTO T 89, T 90 / ASTM D 4318

Client: Patrick Engineering Project: IARC Building WEI Job No: 190-18-85 Prep Method: air dried

30

28

26

24

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Blow count	Water content (%)	Water content fitted (%)
	Wc	Ww	Wd	Ν	w	. /
I	11.39	21.26	19.51	22	21.55	21.63
2	11.10	21.46	19.68	37	20.75	20.83
3	11.29	21.86	19.99	27	21.49	21.32
4	11.32	20.52	18.86	17	22.02	22.03
				Liquid li	mit (%) =	21 43
	$E_{1,45}$				21.7 3	

Slope of flow line = 0.073

Experiment

Fitted

- - · LL

Analyst name: M. de Iso Reyes Test date: June 22, 2010 Soil Sample: B-2 (11.0-12.5 ft) Sample description: Gray Silty Clay

% retained on #40 sieve: 43%

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Water content (%)
	Mc	Йw	Md	w
1	11.05	17.36	16.62	13.29
2	11.16	18.83	17.93	13.29
3	11.38	20.14	19.07	13.91
4	11.14	20.14	19.07	13.49

Plastic limit (%) = 13.50

Liquid limit (%) = 21	
Plastic limit (%) = 13	
Plasticity index $(\%) = 8$	

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

s:\netprojects\1901885\lws_wang_mdir_01901885atterbergb-2(11-12.5ft)_20100623.xis

٦

UNCONFINED COMPRESSIVE STRENGTH (AASHTO T 208 / ASTM 2166)

Project: IARC Building Client: Patrick Engineering WEI Job No.: 190-18-85 Sample ID/Location: B-3-10 (10.0-12. ft) Type/Condition: Shelby Tube/undisturbed

Average initial height $h_0 = 5.67$	in
Average initial diameter d ₀ = 2.97	in
Height to diameter ratio= 1.91	
Mass of wet sample and tare $M_i = 1577.87$	g
Mass of dry sample and tare $M_d = 1322.60$	g
Mass of tare $M_t = 161.97$	g
Mass of sample Ms= 1415.90	g

Estimated specific gravity G_s = 2.75

Force (lbs)

F

0.00

2.07

3.11

4.15

5.19

6.22

6.22

8.30

10.37

12.44

13.48

15.56

18.67

20.74

20.74

21.78

22.81

22.81

24.89

24.89

27.38

Displacement (in)

Δh

0.00

0.03

0.06

0.06

0.12

0.15

0.18

0.21

0.24

0.27

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.80

0.90

Analyst name: *M. de los Reyes* Date received: *17-Jun-10* Test date: *21-Jun-10* Sample description:

Gray Silty Clay	
Initial water content w = 21.99%	entire sample
Initial unit weight g = 136.81	pcf
Initial dry unit weight $g_d = 112.14$	pcf
Initial void ratio $e_0 = 0.53$	
Initial degree of saturation $S_r = 100\%$	
Young's modulus E = 2.20	tsf
Unconfined compressive strength $q_u = 0.24$	tsf
Shear Strength= 0.12	tsf
S	Carl C. C. Martin Communication of Street of S

NOTES:

M.de Prepared by: Checked by:

Stress

(tsf)

s

0.00

0.02

0.03

0.04

0.05

0.06

0.06

0.08

0.10

0.12

0.13

0.15

0.18

0.20

0.20

0.20

0.21

0.21

0.23

0.22

0.24

Strain (%)

е

0.00

0.53

1.06

1.06

2.11

2.64

3.17

3.70

4.23

4.76

5.29

6.17

7.05

7.93

8.81

9.69

10.57

11.46

12.34

14.10

15.86

WANG ENGINEERING, INC.

6/23/10

06/25/10

Date:

Date:

s:\netprojects\1901885\lws_wang_mdlr_01901885ucb-3-10(10-12ft)_20100622.xls

1145 N. Main Steet, Lombard, IL 60148

ASHFORIS ASHFORIS

Axial Stress vs. Axial Strain

5

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

s:\laboratory\labforms\soils\unconfined compressive strength.xls

LIQUID LIMIT, PLASTIC LIMIT, and PLASTICITY INDEX

AASHTO T 89, T 90 / ASTM D 4318

Client: Patrick Engineering Project: IARC Building WEI Job No: 190-18-85 Prep Method: air dried

30

28

26

24

22

20

60

50

40

30

20

10

Water content (%)

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Blow count	Water content (%)	Water content fitted (%)
	WC	WW	Wd	N	w	L
1	13.90	24.50	22.44	28	24.12	24.20
2	13.86	24.49	22.48	38	23.32	23.23
3	13.52	28.30	25.36	22	24.83	24.96
4	13.89	26.24	23.70	17	25.89	25.78
				Y 1. 1 1 1	** (0/)	21.86
			Liquid limit (%) = 24.56			
			Slope of flow line $= 0.129$			

Analyst name: M. de los Reyes Test date: June 23, 2010 Soil Sample: B-4-10 (16.0-17.5 ft) Sample description: Gray Silty Clay % retained on #40 sieve: 16%

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Water content (%)
1	Mc	Mw	Md	w
I	14.04	21.42	20.52	13.89
2	13.87	20.09	19.29	14.76
3	13.86	22.39	21,32	14.34
4	13.88	22.18	21.14	14.33

Plastic limit (%) = 14.33

Plasticity index PI (%) MH&OH 10 ML&OL 0 0 50 100 Liquid limit LL (%) 1. de los 1 Date: 6/25/10 Prepared by: Date: 06/25/15 Checked by:

Blow count

CL

СН

Experiment

Fitted

- · ·LL

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

s:\netprojects\1901885\lws_wang_mdlr_01901885atterbergb-4(16-17.5ft)_20100624.xls

UNCONFINED COMPRESSIVE STRENGTH (AASHTO T 208 / ASTM 2166)

Project: IARC Building Client: Patrick Engineering WEI Job No.: 190-18-85 Sample ID/Location: B-4-10 (13.5.-15.0 ft) Type/Condition: Shelby Tube/undisturbed

Average initial height $h_0 = 5.72$	in
Average initial diameter $d_0 = 2.86$	in
Height to diameter ratio= 2.00	
Mass of wet sample and tare $M_i = 1327.13$	g
Mass of dry sample and tare $M_d = 1084.90$	g
Mass of tare $M_t = 13.23$	g

Mass of sample Ms= 1313.90 Estimated specific gravity G_s = 2.75

Force (lbs)

F

0.00

2.49

5.19

9.33

13.48

18.67

22.81

26.96

31.11

35.26

37.33

43.55

46.67

49.78

53.92

56.00

58.07

58.07

58.07

58.07

58.07

Displacement (in)

Δh

0.00

0.03

0.06

0.06

0.12

0.15

0.18

0.21

0.24

0.27

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.80

0.90

g

Strain (%)

е

0.00

0.52

1.05

1.05

2.10

2.62

3.15

3.67

4.20

4.72

5.25

6.12

6.99

7.87

8.74

9.62

10.49

11.37

12.24

13.99

15.74

Stress

(tsf)

s

0.00

0.03

0.06

0.10

0.15

0.20

0.25

0.29

0.33

0.38

0.40

0.46

0.49

0.51

0.55

0.57

0.58

0.58

0.57

0.56

0.55

Analyst name: M. de los Reves Date received: 17-Jun-10 Test date: 21-Jun-10 Sample description: ſ

Gray Silty Clay	
Initial water content w = 22.60%	entire sample
Initial unit weight g = 136.38	pcf
Initial dry unit weight g _d = 111.24	pcf
Initial void ratio $e_0 = 0.54$	
Initial degree of saturation $S_r = 100\%$	
Young's modulus $E = 7.70$	tsf
Unconfined compressive strength q _u = 0.58	tsf
Shear Strength= 0.29	tsf
C A CALL AND A	and a subject of the state of the state of the

NOTES:

Prepared by: M. de las numb Date: 6 Date: 06/2-510 Checked by:

WANG ENGINEERING, INC.

10

s:\netprojects\1901885\lws_wang_mdir_01901885ucb-4-10(13.5-15ft) 20100622.xls

1145 N. Main Steet, Lombard, IL 60148

ASHTO R18

Axial Stress vs. Axial Strain

s:\laboratory\labforms\soils\unconfined compressive strength.xls

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

LIQUID LIMIT, PLASTIC LIMIT, and PLASTICITY INDEX

AASHTO T 89, T 90 / ASTM D 4318

Client: Patrick Engineering Project: IARC Building WEI Job No: 190-18-85 Prep Method: air dried

29

27

25

23

21

19

17

15 -

60

50

40

30

20

10

0 | 0

Prepared by:

Checked by:

Plasticity index PI (%)

10

Water content (%)

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Blow count	Water content (%)	Water content fitted (%)
	Wc	Ww	Wđ	N	w	
1	13.75	24.10	22,27	14	21.48	21.57
2	13.91	24.07	22.31	18	20.95	20.78
3	13.62	27.25	25.05	28	19.25	19.38
4	13,75	28.45	26.16	38	18.45	18.41
			Liquid limit (%) ≠ 19.73			
			Slope of flow line = 0.159			

Blow count

CL

50

ML&OL

СН

Experiment

Fitted

MH&OH

100

- - · LL

Analyst name: M. de los Reyes Test date: June 23, 2010 Soil Sample: B-7-10 (8.5-10.0 ft) Sample description: Brown & Gray Silty Clay % retained on #40 sieve: 8%

Set #	Tare mass (g)	Tare with wet soil (g)	Tare with dry soil (g)	Water content (%)
	Mc	Mw	Md	w
Ι	13.85	22.40	21.24	15.70
2	13.67	22.52	21.31	15.84
3	13.84	23,12	21.86	15.71
4	13.68	26,54	24.78	15,86

Plastic limit (%) = 15.78

100

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

s:\netprojects\1901885\lws_wang_mdlr_01901885atterbergb-7(8.5-10.0ft)_20100624.xls

UNCONFINED COMPRESSIVE STRENGTH (AASHTO T 208 / ASTM 2166)

Project: IARC Building Client: Patrick Engineering WEI Job No.: 190-18-85 Sample ID/Location: B-7-10 (12.5.-14.5 ft) Type/Condition: Shelby Tube/undisturbed

Mass of sample Ms= 1393.90

Force (lbs)

F

0.00

2.49

5.19

9.33

13.48

18.67

22.81

26.96

31.11

35.26

37.33

43.55

46.67

49.78

53.92

56.00

58.07

58.07

58.07

58.07

58.07

g

Strain (%)

е

0.00

0.50

1.00

1.00

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.83

6.66

7.50

8.33

9.16

10.00

10.83

11.66

13.33

14.99

Stress

(tsf)

s

0.00

0.03

0.06

0.10

0.15

0.21

0.25

0.29

0.34

0.38

0.40

0.46

0.49

0.52

0.56

0.58

0.59

0.59

0.58

0.57

0.56

Estimated specific gravity $G_s = 2.75$

Displacement (in)

Δh

0.00

0.03

0.06

0.06

0.12

0.15

0.18

0.21

0.24

0.27

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.80

0.90

NOTES:

Analyst name: M. de los Reyes Date received: 17-Jun-10 Test date: 21-Jun-10 Sample description:

	Gray Silty Clay	
	L	
	Initial water content w = 20.78%	entire sample
	Initial unit weight g = 139.20	pcf
ti ti	nitial dry unit weight $g_d = 115.26$	pcf
	Initial void ratio $e_0 = 0.49$	
Initial of	legree of saturation S _r = 100%	
	Young's modulus E = 8.17	tsf
Unconfined co	mpressive strength $q_u = 0.59$	tsf
	Shear Strength= 0.30	tsf
s		

sketch/picture at failure

Prepared by: M. Clo for Muy Date: 6/23/10 Date: 06/25(1) Checked by:

WANG ENGINEERING, INC.

s:\laboratory\labforms\soils\unconfined compressive strength revised.xls

1145 N. Main Steet, Lombard, IL 60148

ASHTO R18

Axial Stress vs. Axial Strain

=

WANG ENGINEERING, INC. 1145 N. Main Street, Lombard, IL 60148

s:\netprojects\1901885\lws_wang_mdlr_01901885ucb-7-10(12.5-14.5ft)_20100622.xls

APPENDIX D

TECHNICAL BULLETIN NO. 9 GEOPIER FOUNDATION CO. INC.
GEOPIER FOUNDATION CO INC TECHNICAL BULLETIN

VIBRATION AND NOISE LEVELS

Construction vibration and noise levels are important when considering the effect of construction activities on adjacent buildings, building additions and neighbors. This technical bulletin describes the results of vibration and noise monitoring performed adjacent to Geopier® and Impact[™] Rammed Aggregate Pier (RAP) activities. This information should be used when evaluating the feasibility of a RAP solution at a particular site. For sites with increased vibration and noise sensitivity, a site-specific monitoring program should be considered.

I. CONSTRUCTION VIBRATIONS

Many construction activities result in the transmission of vibrations across the construction site. Vibration levels depend on the types of construction activities as well as the soil conditions at the site. The effect of vibrations on adjacent buildings depends on the building's construction (wood, masonry, steel, concrete), building age, distance of the adjacent building from the source of vibration, duration of vibration, vibration frequency, vibration amplitude and soil conditions. In general, low frequency (long period) motions result in a greater likelihood of building damage compared to high frequency (short period) motions. This is because

of the significant damping effect that occurs in soils subjected to high frequency (short period) motions. In contrast, soils subjected to low frequency (long period) motions may amplify the vibrations.

In the United States, high frequency vibrations levels less than two in/sec at the building location are generally considered to be acceptable (Wiss 1981). These levels of vibrations are unlikely to lead to building damage. Vibration levels between 0.5 in/sec and 2 in/sec, are generally considered to be an annoyance but not structurally damaging. Vibration levels of less than 0.5 in/sec are often not noticeable.

2. RAMMED AGGREGATE PIER CONSTRUCTION

Rammed Aggregate Pier construction is described in detail in the Geopier Reference Manual (Fox and Cowell 1998). Geopier Rammed Aggregate Piers are constructed by drilling out a volume of compressible soil to create a cavity and then ramming select aggregate into the cavity in thin lifts using the patented beveled tamper. Impact Rammed Aggregate Piers are installed in caving soils through the use of a hollow mandrel driven to the design depth. Aggregate placed down the center of the hollow mandrel fills the cavity and is compacted in thin lifts as the mandrel is raised up and rammed down to achieve compaction. The ramming action during construction of Rammed Aggregate Piers causes the aggregate to compact vertically and to push laterally against the matrix soil, thereby increasing the horizontal stress in the matrix soil. Rammed Aggregate

Pier construction results in a very dense aggregate pier with superior strength and stiffness. During installation, the hammers that produce the ramming action operate at ranges of 400 to 600 cycles per minute (7 to 10 cycles per second) for Geopier RAPs and 2,000 to 2,400 cycles per minute for Impact RAPs. These high frequency vibration levels are higher than most other construction activities resulting in a large amount of damping within the reinforced soils at the project site. Conversely, pile driving typically produces vibrations associated with low frequencies on the order of 60 cycles per minute (one cycle per second) and an associated period of one second. The RAP vibration levels are thus both lower in amplitude and higher in frequency than pile driving activities, resulting in lower vibrations measured at adjacent sites.

3. VIBRATION MONITORING

Vibration monitoring has been performed at a number of Rammed Aggregate Pier project sites to evaluate the amplitude and frequency of vibrations as a function of distance from the energy source. The following table contains summaries of the collected data. The table includes a description of the soil conditions, installation technique, distance ranges from source, as well as the field vibration data for each of the project sites.

Table 1. Vibration Monitoring Results*

LOCATION	SOIL DESCRIPTION	REINFORCE- MENT SOLUTION	DISTANCE FROM SOURCE (ft)	PEAK PARTICLE VELOCITY (ips)	FREQUENCY (Hz)
MEMPHIS, TN	MED. STIFF CLAY	GEOPIER RAP	1.7 - 2	.18 - 2.96	43 - 57
		GEOPIER RAP	5 ~ 10	.1270	43 - 73
SOMERVILLE, MA	MED. DENSE GRANULAR FILL	GEOPIER RAP	1.5 - 10	.5065	30 - 85
SAN LUIS OBISPO, CA	STIFF CLAY	GEOPIER RAP	7 - 15	.0455	15 - 60
MINNEAPOLIS, MN	LOOSE SAND	GEOPIER RAP	3 - 50	.0790	27 - 57
MINNEAPOLIS, MN	LOOSE SAND	IMPACT RAP	3 - 20	.5699	21 - 47
		IMPACT RAP	30 · 100	.0248	21 · 47
MANALAPAN, NJ	MED. DENSE SILTY SAND	IMPACT RAP	5 10	.57 - 3.19	37 - 64
		IMPACT RAP	25 - 50	.1062	34 - 73

*Monitoring results are also plotted in Figures 2 and 3.

At one project site, the Baptist Memorial Hospital Addition in Memphis, Tennessee, Geopier RAPs were installed in close proximity to existing hospital facilities. An accelerometer was used at the site to measure both accelerations and peak particle velocities (PPV) during the installation of the Geopier elements. The accelerometer was positioned at distances ranging from 1.7 feet to 10 feet away from the Geopier RAPs as the tamper head elevation ranged from the ground surface to greater than 13 feet below grade. The subsurface conditions consisted of medium-stiff clay with groundwater below the bottoms of the piers. The results of the accelerometer testing are shown graphically in Figure 1.

Figure 1. Peak Particle Velocity With Depth For Different Energy Source Distances

Peak Particle Velocity (in/sec)

4. DISCUSSION OF VIBRATION RESULTS

The results of the vibration monitoring data (Figure 1) indicate that RAP construction vibration amplitudes decrease with increasing depth below the ground surface. The highest vibration amplitudes are observed when the tamper is at the ground surface. Table 1 and Figures 2 to 4 show the ranges of peak particle velocity with distance from the source. The data indicates that vibration amplitudes reduce with radial distance from the energy source. This rapid dissipation of vibration amplitudes is attributed to the high frequency (low period) vibrations resulting from the hammers used during RAP construction. For Geopier RAP elements, the peak particle velocities are generally less than two in/sec at distances of two feet from the installation location and less than 0.75 in/sec at distances of five

feet from the installation location. For Impact RAP elements, the peak particle velocities are less than two in/sec at distances on the order of 10 to 15 feet from the pier installation location and less than 0.75 in/sec at distances of 20 to 25 feet from the installation location. The higher amplitudes observed for the Impact RAP installations are likely attributed to the displacement installation procedure and the densification of the granular soils during installation. Figure 4 shows a comparison of Geopier RAP vibration levels from the site in San Luis Obispo, California compared with other construction equipment. As indicated, the measured vibration levels are comparable to those induced by a jack hammer or a large bulldozer and are considerably lower than pile driving operations.

Figure 2. Peak Particle Velocities For Geopier RAPs With Distance From Energy Source 3.0 ▲ Range of PPV - Memphis, TN ◆ Range of PPV - San Luis Obispo, CA 2.5 Maximum PPV values - Minneapolis, MN Peak Particle Velocity (in/sec) • Maximum PPV values - Somerville, MA 2.0 1.5 1.0 0 0.5 Ţ × **T** . 0.0 1 10 100 Distance From Source (ft) Figure 3. Peak Particle Velocities For Impact RAPs With Distance From Energy Source 3,0 A Range of PPV - Manalapan, NJ Maximum PPV - Minneapolis, MN 2.5 2.0 1.5

Figure 5 shows the peak particle velocities of the Geopier Rammed Aggregate Piers plotted with vibration frequency as measured at the San Luis Obispo, California project site. The figure indicates that the

high frequency energy used during installations results in peak particle velocities lower than the recognized standard threshold for building damage.

Peak Particle Velocity With Distance From Geopier RAP (Fiegel 2005)

Figure 4.

Figure 5. Peak Particle Velocity With Vibration Frequency (Fiegel 2005)

Although the data from Table 1 and Figures 1 through 5 may be used for most project sites, settlement-

sensitive sites should include a site-specific monitoring program to evaluate vibration levels.

5. NOISE LEVELS

Construction noise decibel levels were recorded during the installation of Geopier Rammed Aggregate Pier elements at the Baptist Memorial Hospital project. Using a decibel meter, the noise levels were recorded with increasing distance from the Geopier RAP installation. At each distance, readings were recorded for the noise level while the ramming assembly was positioned at both the top and the bottom of the cavity. The results of the measurements are summarized in Table 2 and shown in Figure 6.

Table 2. Summary Of Noise Levels

DISTANCE FROM RAMMING ASSEMBLY (ft)	DECIBEL LEVEL WITH TAMPER AT TOP (dB)	DECIBEL LEVEL WITH TAMPER AT BOTTOM (dB)
2	100	104
5	100	102
10	96	98
25	86	98
50	82	90
100	75	82

Figure 6.

Range Of Geopier RAP Noise Levels With Distance From Source

The decibel level for the Geopier RAP installation process reduces significantly with distance from the ramming assembly. The decibel levels drop from approximately 100 dB adjacent to the Geopier installation equipment to approximately 75 to 80 dB at a distance of 50 to 100 feet. For comparison purposes, it should be noted that interpersonal communication is on the order of 60 dB, heavy truck traffic is on the order of 85 dB and pile driving operations are on the order of 105 dB.

6. CONCLUSIONS

Rammed Aggregate Pier installations induce high frequency (low period) vibrations during the construction process. Vibration levels for Geopier Rammed Aggregate Piers are typically within acceptable levels at distances between 2 and 5 feet from the installation location, while vibration levels for Impact Rammed Aggregate Piers are within tolerable levels at distances between 10 and 20 feet from installation locations. Noise levels for Rammed Aggregate Piers are consistent with construction-type activities.

ACKNOWLEDGEMENTS

The authors are indebted to Peterson Contractors, Inc. for providing vibration results and JGI/Eastern, Inc., French and Parrello Associates, and American Engineering Testing, Inc. for providing vibration monitoring services.

REFERENCES

Fiegel, G. (2005). Measurement of Vibration and Noise During the Installation of Rammed Aggregate Piers - Preliminary Data Report Draft, Department of Civil and Environmental Engineering. California Polytechnic State University. San Luis Obispo, CA.

Fox, N.S. and Cowell, M.J. (1998). Geopier Foundation and Soil Reinforcement Manual, Geopier Foundation Company, Inc., Scottsdale, AZ.

Wiss, J.F. (1981). Construction Vibrations: State-of-the-Art. ASCE Journal of the Geotechnical Engineering Division, 107 (GT2), pp. 167-181.

AUTHORS

Brendan T. FitzPatrick, Director of Engineering / Development - North America, Geopier Foundation Company, Inc. Kord J. Wissmann, Ph.D., P.E., President / Chief Engineer, Geopier Foundation Company, Inc.

© 2006 Geopier Foundation Company, Inc.

NORTH AMERICA AND SOUTH AMERICA

Geopier Foundation Company, Inc, Telephone: (540) 951.8076 or (800) 371.7470 Fax: (540) 951.8078 Email: info@geopier.com www.geopier.com

EUROPE AND ASIA

Geopier Global Corporation Telephone: (480) 998.3522 Fax: (480) 998.3542 Email: natfox@geopierglobal.com www.geopierglobal.com

Geopier Foundation Company, Inc.

800.371.7470 www.geopier.com