Accelerator Modeling&&Future Experiments

P. Spentzouris Fermilab

Computationally challenging accelerator physics, common to most HPC applications

- Machine design/operation: particles affected by machine components, other beam particles or beams [Beam Dynamics]
 - Space charge
 - Beam-beam
- Many particles

Many DOF

- Electron cloud
- Electron cooling
- Intrabeam scattering
- Geometry (1000's of 3D elements)
- Component design [Electromagentics]
 - Impedance
 - Wakefields
 - multipacting
 - Thermal, mechanical
- New accelerator technologies [Advanced Accelerators]
 Many particles
 - Laser and plasma wakefields
 - Ionization cooling
- Multi-physics simulations, multi-parameter optimization runs necessary

HPC accelerator modeling approaches

- Different physics call for a variety of approaches resulting to wide spectrum of computational requirements
 - Beam Dynamics: electrostatic PIC
 - Electromagnetics: finite difference and finite element, time and frequency domain
 - Advanced Accelerators: full EM PIC and reduced PIC
- Codes are spectral based, finite difference based, and hybrids, with both FFT and multi-grid based solvers.
- Depending on the physics of the problem, domain, particle, or hybrid decomposition is used. There is communication & storage of particle data, computational grid data, and geometry
- Application focus includes "discovery" and "design optimization" areas
 - Results in either very-large-scale and very-large-volume medium scale computations, thus large data sets per run

Current state of the art (simulation size)

Exascale

Already getting good efficiency at large number of cores

Exascale provides opportunity for even larger simulations, in the case of plasma based acceleration the opportunity for full scale ab-initio simulations of experiments and real-time steering of these experiments, if the simulated data could be made available at the research facility.

Plans for HPC accelerator simulation utilization

- Near-real-time steering of experiments (advanced concept R&D)
 - Beam facilities (for example BELLA, FACET, such utilization already an activity within the collaboration)
 - Component design (for example CLIC)
- Near-real-time steering of operating accelerators
- Requires data mining and interactive exploration of TB simulated data sets in the control room
 - Current paradigm has all analysis done at the SC centers, with high level info communicated to researchers and stakeholders

🛟 Fermilab

Component design

CAD model of LCLS RF gun

Enaineerina prototype

Courtesy D. Dowell

Numerical Model

Electromagnetics

Requirements from NERSC planning workshop

	Current	Next 3-5 Years	
Computational Hours	12M 40M		
Parallel Concurrency	2k-10k	10k-100k	
Wall Hours per Run	48	72	
Aggregate Memory	2 TB 10 TB		
Memory per Core	0.5 GB	1 GB	
I/O per Run	100 GB-1TB 500GB-5TB		
On-Line Storage Needed	2 TB 15 TB		
Data Transfer	500GB/week	5TB/run	

	Current	Next 3-5 Years		
Computational Hours	9.2 million	100 million		
Parallel Concurrency	8192	75,000		
Wall Hours per Run	12	24		
Aggregate Memory	12 TB 100 TB			
Memory per Core	1.5 GB 1.5 GB			
I/O per Run	1 TB	10 TB		
On-Line Storage Needed	500 GB	5 TB		
Data Transfer	100 GB/run	10TB/run		

EM

BD

	Current	Next 3-5 Years	
Computational Hours	3.5M	150M	
Parallel Concurrency	11k	500k (large) / 50k (sml)	
Wall Hours per Run	24	12 / 12	
Aggregate Memory	100GB	100TB / 10 TB	
Memory per Core	<0.1 GB	0.5GB / 0.5 GB	
I/O per Run	2 TB	50TB / 5 TB	
On-Line Storage Needed	2 TB	50TB	
Data Transfer	5 TB/run	50TB/run	

Accelerator Modeling requirements							
Featur e	Scientific instruments	Scientific Process	Requireme	ments			
Time Scale			Network	Middlew are			
Near	 Large scale multi-physics simulations Large data sets per run (~100 TB), many runs (parameter optimization) Operating accelerators Component prototyping and testing 	 Distributed collaboration Remote operation, steering Remote visualization Sharing of data and metadata, data mining 	 Robustne ss Reliability Quality Quality of service Interoper ability for security Large- scale data storage 	Remote I/O Collabo rative data access			
5+ years	Could provide info if this format useful						

Future Experiments

It seems that as far as data volume and rate demands nothing that "known" near future experiments require can surpass LHC experiment requirements. Maybe an interesting case would be the evolution of the idea of a trigerless streaming DAQ, where the data is not streaming from the detector to the experimental hall, but to computing resources residing in remote areas (collaborating institutions)

□ Mu2E, for example, ~100GBytes/sec

Figure 8.1: A scalable triggerless data acquisition architecture. Detector electronics (DE) sends hit information to readout modules (RO), which transmit data over high-speed optical data links to a network switch that routes data from different parts of the detector to individual processor nodes (P). Events are selected and prepared for storage in the processor nodes. The number of front-end data links and/or the number of processor nodes can be increased to add throughput to the system.

