# Detector for the PRISM: PRIME 

- PRISM Muon to Electron conversion -

Akira SATO
Department of Physics, Osaka University
The Project-X Muon Workshop
November 8th (Monday), 2010, FNAL

## PRIME: from stopping targets to detectors



- Thin Stopping Targets
- due to mono-energetic muons
- Graded Field at Muon Target Solenoid
- To maximize transmission efficiency of the curved solenoid.
- Curved Solenoid
- To suppress low momentum electrons.
- Low Mass Tracker
- to be transparent to $\gamma$ 's.
- $\mathrm{f}<1 \mathrm{MHz}$
- Electron Calorimeter
- Trigger
- Cosmic Muon suppression
- $\mathrm{f}<1 \mathrm{MHz}$
- No Time Window
- pure muon beam
-     + curved solenoid


## Introduction

- The parameters of muon beam for the PRISM would have many advantages.
- ex). Thinner stopping target to get better electron energy resolution.
- but also would make a very high instantaneous detector hit rate $\mathrm{R}_{\text {inst }}$.
- Rough estimation
- $\mathrm{R}_{\mathrm{inst}}$
- $=2 \times 10^{12} \mu / \mathrm{s} / 10^{3}$ pulse $/ \mathrm{s} / 10^{-6} / \mathrm{s}$
- $=\sim 10^{15} \mathrm{~Hz}$
- Detector cannot work!
- We use a Spiral Solenoid

Muon beam param. in this study

| Muon intensity | $2 \times 10^{12}$ | $\mu / \mathrm{sec}$ |
| :---: | :---: | :---: |
| Mean momentum | 68 | MeV |
| Momentum spread | 3 | $\%$ |
| Rep. rate | 1000 | Hz |
| Pulse width | 100 | nsec |
| Beam size (H.) | $\sim 100$ | mm |
| Beam size (V.) | $\sim 80$ | mm | |  |
| :--- |
| will be changed to $40 \mathrm{MeV} / \mathrm{c}+-3 \%$ | Spectrometer to suppress the instantaneous rate.

This talk shows a MC study for the stopping target and the spectrometer.

## References of this talk

## PRISM Tech. note

## PRIME-Lol to J-PARC

Spiral Solenoid Spectrometer for a PRISM $\mu$-e Conversion Experiment.

## N. Sasao

Department of Physics, Kyoto University, Kyoto 606, Japan October 25, 2001

## 1 Introduction

In this note, I propose to employ a spiral solenoid spectrometer for a PRISM $\mu$-e conversion experiment. In this experiment, we hope to reach branching ratio sensitivity as low as $10^{-1}$ with a PRISM muon beam. The PRISM beam is a newly-designed low-energy pulsed PRISM beam, among which are intensity, monochromatisity and purity However, there is also a certain disadvantage, namely a very low duty factor Thus any detector which is also a certain disadvantage, namely a very low duty factor. Thus any detector which uses the PRISM beam must be able to handle a very high instantaneous rate. In a $\mu$-e
conversion experiment, taking a typical muon life time in a stopping target to be $\sim 1 \mu \mathrm{sec}$, conversion experiment, taking a typical muon life time in a stopping target to be $\sim 1 \mu \mathrm{sec}$,
instantaneous decay rate amounts to an order of $\sim 10^{16} \mathrm{~Hz}\left(10^{12} \mu / \mathrm{sec} \div 10^{2}\right.$ pulse $/ \mathrm{sec}$ instantaneous decay rate amounts to an order of $\sim 10^{11} \mathrm{~Hz}\left(10^{12} \mu / \mathrm{sec} \div 0^{2}\right.$ pulse/sec
$\left.\div 10^{-6} \mathrm{sec}\right)$. This number should be compared with $\sim 10^{11} \mathrm{~Hz}\left(10^{11} \mu / \mathrm{sec} \div 10^{6}\right.$ pulse $/ \mathrm{sec}$ $\div 10^{-6} \mathrm{sec}$ ) in the MECO experiment, which will be carried out year $\sim 2006$ at BNL aiming at the branching ratio sensitivity down to $10^{-16}$.
"How to handle this instantaneous rate?" The main purpose of this note is to answer this question with a spiral solenoid spectrometer. The note is organized as follows; in the next section, the basic principle is explained. Although charged particle dynamics in a magnetic field is well known, this type of spectrometer is new in high energy physics experiments.

Table 1: PRISM beam characteristics.


A Letter of Intent to
The J-PARC $50-\mathrm{GeV}$ Proton Synchrotron
Experiment

An Experimental Search for the $\mu^{-}-e^{-}$
Conversion Process at an Ultimate Sensitivity of the Order of $10^{-18}$ with PRISM

The PRIME Working Group
January 1, 2003

## Layout and Magnetic Field in This Study

- 540 deg. spiral solenoid for the electron spectrometer.
- cf. COMET has a 180 deg solenoid for the spectrometer.


## Spiral Solenoid Spectrometer for PRISM




## Muon Stopping Targets

for the narrow energy spread muon beam

## Muon Stopping Target:



## $\sigma_{\text {range }}=38 \mu \mathrm{~m}$

It is dominated by momentum distribution.

## Ti target of 1 mm is enough to stop muons.

If the performance of phase rotation at PRISM gets better, there is still a room to get a muon-stopping target thinner by a factor of two at most (to about $500 \mu \mathrm{~m}$ full width).


## Parameters of Stopping Targets

In the following studies,

|  | PRISM | cf.COMET |
| :---: | :---: | :---: |
| Number of layers | 20 | 17 |
| Disk thickness | $50 \mu \mathrm{~m}$ | $200 \mu \mathrm{~m}$ |
| Disk diameter | 5 cm | 10 cm |
| Disk spacing | 5 cm | 5 cm |
| Material | Ti | Al |

## Energy Loss of Outgoing Electrons



20 layers of $50 \mu \mathrm{~m}$ Ti disks ( $D=5 \mathrm{~cm}, 5 \mathrm{~cm}$ separation)

## cf. Energy Loss of Outgoing Electrons for COMET



Figure 6.6: Momentum distribution of $\mu^{-}-e^{-}$conversion signal electrons, including the effect of energy loss in the muon-stopping target.

17 layers of $200 \mu \mathrm{mTi}$ disks ( $D=10 \mathrm{~cm}, 5 \mathrm{~cm}$ separation)

## Tracking Detector

- Main detector to measure Ee
- Thickness should be about 0.01 radiation-length to suppress $y$ backgrounds.
- Spatial resolution < 0.5 mm
- Hit multiplicity $\sim 1$ per plane per event
- Straw tube tracker
- 5 mm , 208 tubes per sub-layer
- four layers per station
- anode readout (X, X', Y, Y')
- five stations, 48 cm apart


A Prototype chamber tested by beam.
Anode position resolution of $112 \mu \mathrm{~m}$.

## Track Fitting Simulation

PRISM

- 5 x-y Tracking Stations
- 1-T uniform B
- 480 mm spacing
- Polyimide: $160 \mu \mathrm{~m}^{\mathrm{t}}$ per plane
- Multiple Scattering by Break Point Method
- Require single hit for each plane
- $\sigma_{[\text {tracking] }}=150 \mathrm{keV} / \mathrm{c}$
- Momentum resolution
- COMET: rms[total] = $770 \mathrm{keV} / \mathrm{c}$
- the energy loss uncertainly in the muon-stopping target is large.
- PRISM: rms[total] $\Rightarrow 150 \mathrm{keV} / \mathrm{c}$

$p_{\text {fit }}$ - $P_{\text {true }}$



## Spiral Solenoid Spectrometer

## Principle of Electron Transport Solenoid

## Charged Particle Trajectory in Curved Solenoids

- A center of helical trajectory of charged particles in a curved solenoidal field is drifted by

$$
D=\frac{p}{q B} \theta_{\text {bend }} \frac{1}{2}\left(\cos \theta+\frac{1}{\cos \theta}\right)
$$

$D$ : drift distance
$B$ : Solenoid field
$\theta_{\text {bend }}:$ Bending angle of the solenoid channel
$p:$ Momentum of the particle
$q$ : Charge of the particle
$\theta: \operatorname{atan}\left(P_{T} / P_{L}\right)$

- This drift can be compensated by an auxiliary field parallel to the drift direction given by

$$
B_{c o m p}=\frac{p}{q r} \frac{1}{2}\left(\cos \theta+\frac{1}{\cos \theta}\right)
$$

$p:$ Momentum of the particle
$q$ : Charge of the particle
$r$ : Major radius of the solenoid
$\theta: \operatorname{atan}\left(P_{T} / P_{L}\right)$

- Blockers in the curved solenoid improve the background suppression.


## Layout and Magnetic Field in This Study

- The performance of the spectrometer was studied by MC simulation.

Spiral Solenoid Spectrometer for PRISM



Detector Section

## Trajectory in the spiral solenoid



## Electron Transport Efficiency



## Detector Rate

- Particles entering the detector are expected to be dominated by DIO electrons.
- Positively charged particles and neutrals would be altered out, to a large extent, by the spiral solenoid section.
- We estimated the number of entering particles using the transport efficiency and the decay in orbit electron spectrum.

| Cut conditions | No. of DIO particles <br> per pulse | Signal efficiency |
| :---: | :---: | :---: |
| $\mathrm{z}>-0.25[\mathrm{~m}] ;$ <br> $\mathrm{x}>-0.35[\mathrm{~m}]$. | $<0.1$ | $92.4 \%$ |
| $\mathrm{z}>-0.30[\mathrm{~m}] ;$ <br> $\mathrm{x}>-0.35[\mathrm{~m}]$. | $100 \%$ | used for acc. <br> estimation |
| $\mathrm{z}>-0.35[\mathrm{~m}] ;$ <br> $\mathrm{x}>-0.35[\mathrm{~m}]$. | $<0.4$ | $100 \%$ |


| Muon intensity | $2 \times 10^{12}$ | $\mu / \mathrm{sec}$ |
| :---: | :---: | :---: |
| Mean momentum | 68 | MeV |
| Momentum spread | 3 | $\%$ |
| Rep. rate | 1000 | Hz |
| Pulse width | 100 | nsec |

## Acceptance of the spiral spectrometer

| Label | Condition | Section | Fraction | Remark |
| :---: | :---: | :---: | :---: | :---: |
| C1 | Target stopping rate | target | $100 \%$ | assumed |
| C2 | Forward direction. | target | $79.3 \%$ |  |
| C3 | Blocker cut (vertical) | spiral solenoid | $79.3 \%$ | Zmin>-0.30 |
| C4 | Blocker cut (horizontal) | spiral solenoid | $79.3 \%$ | Xmin>-0.35 |
| C5 | $\sin \theta>0.33$ | detector | $65.3 \%$ |  |
| C6 | $\Delta E<150[\mathrm{keV}]$ | target | $41.2 \%$ |  |

## Overall efficiency is $41 \%$

## Summary (Detector)

- Detecter system from the stopping target to the detectors for PRISM is studied.
- Thin enough stopping target for the aimed energy resolution.
- Spiral solenoid spectrometer
- with DIO blocker to reduce detector rate
- detector instantaneous hit rate is $<0.4$ / pulse $(\sim 1 \mu \mathrm{~s})=$ $4 \times 10^{5} \mathrm{~Hz}$
- Straw chamber 200 straws/plane -> 2kHz/wire
- Calorimeter 1000 segments -> $400 \mathrm{~Hz} /$ segment
- overall acceptance is $40 \%$
- They look very nice!
- We need to study and optimize the design for the new PRISM parameters.


## Phase Rotator Linac in the PRISM-Lol

## Appendix H

## Alternative Phase Rotator Scheme

## H. 1 Phase Rotator Linac

Although the base line of the phase rotator is FFAG, another phase rotator scheme that uses a simple linac is also being studied : namely PRISM-Linac. The main reason for this study is as follows. While the muons captured by the solenoid magnetic field can be transported sufficiently as long as the magnetic field continues, we need a special care to transfer them to a FODO transport system composed of bending magnets, Q-magnets and so on. When we use a linac instead of the ring as a phase rotator, the muons are captured and transported by a continuous solenoid field till the end (stopping target), and thus the transfer between the two different transport system, solenoid channel and FODO channel, vanishes. In addition, this system does not need fast kickers for injection to and extraction from the rig, which requires special care to be taken. The drawbacks of this linac scheme may be: 1) although they are also transported by the solenoid channel, 2) the cost may be high. The first they are also transported by the solenoid channel, 2 ) the cost may be high. The first
issue can be solved by use of a curved solenoid, which is already described in section 5.2. The resulted system is shown in Fig.H.1 schematically.
5.2. The resulted system is shown in Fig.H.1 schematically.

The following sections describe such an alternative scheme and a rough simulation result of a muon yield.


Figure H.1: Schematic layout of the PRISM-Linac

## Phase Rotator Linac in the PRISM-Lol




Figure H.3: Rough simulation shows how the phase rotation goes. Six 3m-cavities lined up with 1 m spacing generate 9 MV in total. $12-\mathrm{MHz}$ one is used to fit the waveform.


