Imperial College London

K. Long, 8 November, 2010

Synergy with Neutrino Factory R&D

Apologies and thanks:

I would very much have liked to come to this workshop both to engage in the discussions and to make this contribution. Unfortunately, I have not been able to do this.

I would like to apologise to Yoshi Kuno and the organisers for not being at the meeting and I would like to thank Ajit Kurup for presenting these slides on my behalf.

The physics of flavour

Accelerator facilities

Conclusion and opportunity

Synergy with Neutrino Factory R&D:

The Physics of Flavour

- Neutrino oscillations, an established phenomenon
 - \rightarrow Neutrino mass is not zero and neutrinos mix
 - i.e. Standard Model is incomplete
 - \rightarrow Either:
 - Majorana neutrino: a new state of matter; or
 - New physics:
 - To distinguish Dirac neutrino from Dirac anti-neutrino
- Observations:
 - Neutrino mixing pattern substantially different to that of the quarks
 - Neutrino masses are tiny
- Phenomenological description:
 - Mixing of mass states \rightarrow flavour states
 - Potentially yields additional source of CP violation
- Theory presently unable to offer *explanations*
 - Many ideas, many predictive, none established
- Lepton-flavour physics is led by *experiment!*
 - Imperative: devise best experimental programme:
 - Best sensitivity for discovery, best precision on parameters

• Neutrino oscillations:

Synergy:

Charged lepton flavour violation:

- Related processes?
 - Again, many theories, in some there is strong relation between explanation of neutrino oscillations and CLFV, in others there is not
 - Experimentally led, therefore greatest benefit from combining:
 - Neutrino oscillations, CLFV searches, LFV at colliders
- Can we articulate a 'muon programme'?
 - Definitive CLFV programme
 - Definitive neutrino oscillations programme
 - The route to the energy frontier in lepton-antilepton collisions

Synergy with Neutrino Factory R&D:

Accelerator facilities

Overview:

PRISM FFAG-based

Protons

Proton driver:

• Requirements:

	COMET/Mu2e	PRISM	Neutrino Factory
Power (kW)	56	7502000	4000
Energy (GeV)	8	28	515 (8)
Extinction	10 ⁻⁹		
Bunch length (ns)	100	10	2

- Short proton bunch length common requirement:
 - COMET/Mu2e: 100 ns 'achievable':
 - PRISM: 10 ns at high power, low energy requires development
 - Neutrino Factory: 2 ns at high power and low energy requires development
- Chopping:
 - Also common requirement

Chopping/extinction: Chopping: for preparation of linac beam for injection into synchrotron:

 Development required (and in hand) for highpower beams (PRISM, Neutrino Factory, Muon Collider)

• Extinction:

- CLVF: background handling

Bunch compression:

800 MeV Linac

J.Pasternak

ullet

M.Alba

E.Benedetto

t = 96 µs

Pion-production and capture:

- Differences:
 - CLFV: capture backward-going pions
 - Neutrino Factory: capture in forward direction
- Nevertheless, capture systems all based on highfield solenoids:

Muon-beam transport:

- Muon beam is a tertiary beam:
 Typically large emittance
- Solenoidal transport common to CLFV, Neutrino Factory, and Muon Collider
 - COMET requirment:
 - 'Twisted solenoids' to introduce vertical dipole component
 - Possible application in Neutrino Factory front-end

Muon FFAG:

New ring designs for PRISM – Advanced FFAG (J-B. Lagrange et al.)

PRISM LATTICE

Bending cell	
k	6.5
Average radius	$3.5\mathrm{m}$
Phase advances:	
horizontal μ_x	$90 \deg$.
vertical μ_z	$90 \deg$.
Dispersion	$0.47\mathrm{m}$

Straight cell	
n/ ho	$2.14 m^{-1}$
Length	3m
Phase advances	:
horizontal μ_x	$24 \deg.$
vertical μ_z	$87 \deg$.

30.10.2010, FFAG'10 KURRI, Osaka

J. Pasternak

Injection/extraction:

Injection for the reference design

- The reference design injection/ extraction uses 2 short kickers, 1 long one and a short septum (septum and kicker are placed in the same drift). It works for both injection and extraction.
- In order to facilitate the hardware and increase the purity of the beam, it is proposed to have separate injection and extraction.
- It will use 2 long kickers and 1 long septum. This allows to reduce the max B field in the magnets and helps to reduce the aberrations.
- Orbits for central and +/-20% momenta.

30.10.2010, FFAG'10 KURRI, Osaka Injection and Extraction in same 3 cells Central kicker must be pulsed twice End kickers pulsed once

J. Pasternak

	E _{fin} (GeV)	Comment
Pre-accel. Linac	0.9	Change in γ
RLAI	3.6	Switch-yard congestion
RLA II	12.6	Switch-yard congestion
FFAG	25.0	Large acceptance, use of RF

• Linac/RLAs:

- Superconducting linac:
 - Large acceptance;
 - Rapidly increase γ to increase effective lifetime

– Recirculating linacs (RLAs):

- Continue rapid acceleration
- More cost-effective use of RF

Muon acceleration:

Rapid acceleration!

- Fixed Field Alternating Gradient (FFAG) accelerator:
 - Large aperture magnets with fixed field:
 - Continued rapid acceleration
 - Improved cost-efficiency in use of RF
 - Injection/extraction challenging:
 - Development of appropriate schemes in progress

•

T.Planche

3.6—12.5 GeV alternative: Possibility of cost saving through use of an FFAG alternative to Linac/RLAs under study

Parameters of a 3.6 to 12.6 GeV muon ring

Table 1 - Example of 3.6 to 12.6 GeV muon scaling FFAG ring parameters.

Muon acceleration; 12.6—25 GeV FFAG:

Parameter	Value				
Cells	64				
Long drift (m)	5.0				
Drifts within triplet (m)	0	.5			
Cavities	4	8			
RF Frequency (MHz)	201				
RF Voltage (MV)	12	14			
Circumference (m)	66	67			
Turns	11.6				
Decay (%)	6.7				
	D	F			
Magnet Length (m)	2.251	1.087			
Bend angle (mrad)	157	-29			
Axis shift (mm)	41	14			
Field (T)	4.21	-1.39			
Gradient (T/m)	-13.6	18.0			
Radius (mm)	137	163			
Max field (T)	6.1	4.3			

	Injection	Extraction
Kickers	2	4
Pattern	-0-	++00++
Kicker field (T)	0.089	0.067
Septum field (T)	0.92	1.76

IPAC10: MOPEC043, MOPE085,WEPE057

Lattice, including insertions, close to 'freeze';

 Septum magnets, especially extraction septum, challenging

FFAG R&D:

- FFAG machine R&D: – Osaka, Kurri: Scaling FFAG machines for various applications - Daresbury Laboratory: EMMA: non-scaling FFAG Common interest: - Magnets: Combined function, large aperture, etc. -Kickers: Magnets, septa, power supplies and pulse-forming networks;
 - Opportunity to develop hardware demonstrators

Synergy with Neutrino Factory R&D:

Conclusions and opportunity

Conclusions:

- Scientific case for searches for charged-lepton flavour violation, which was always strong, now compelling in the light of emerging understanding of neutrino oscillations
- Field of study of (lepton) flavour physics is *experimentally* led:
 - Implies the need to define the experimental programme most likely to:
 - Discover leptonic CP violation and CLFV
 - Determine the lepton mixing parameters with the requisite precision
- Muon beams offer a rich, staged, particle physics programme that includes:
 - Increasingly sensitive searches for CLFV
 - Definitive measurements of neutrino oscillations
 - The route to the energy frontier in lepton-antilepton collisions

Opportunity:

 Develop an internationally coordinated R&D activity that can deliver the benefits of this muon-physics programme

			Technology or capability											
			Components and systems											
		Concept development	Proton driver	Target and collimator	lonisation cooling	Linac/RLA	FFAG	Kicker/septum	HiTc magnets	High-field magnets	RF power sources	Warm resonator	S/c resonator	Failure mode analysis
	Science and innovation													
	Neutron													
n	Proton (LHC)													
atic	Neutrino SB													
lic	COMET/Mu2e													
dde	PRISM/PRIME													
or a	Neutrino Factory													
ty	Muon Collider													
cili	Impact and society													
Fa	PBT													
	ADSR													
	Secturity													