



#### **Outline**



- Project X Goals and the Reference Design
- RD&D Plan
- Strategy and Timeline

#### Our websites:

http://projectx.fnal.gov

http://projectx-docdb.fnal.gov



# **Evolution of the Fermilab Accelerator Complex**



- A multi-MW Proton Source, Project X, is the linchpin of Fermilab's strategy for future development of the accelerator complex.
- Project X provides long term flexibility for achieving leadership on the intensity and energy frontiers
  - Intensity Frontier:

 $NuMI \rightarrow NOvA \rightarrow LBNE/mu2e \rightarrow Project X \rightarrow Rare Processes \rightarrow NuFact$ 

- Continuously evolving world leading program in neutrino and rare processes physics; opportunities for applications outside EPP
- Energy Frontier:

Tevatron → ILC or Muon Collider

- Technology alignment
- Fermilab as host site for ILC or MC



#### **Mission**



- A neutrino beam for long baseline neutrino oscillation experiments
  - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
  - Operations simultaneous with the neutrino program
- A path toward a muon source for a possible future Neutrino Factory and/or a Muon Collider
  - Requires ~4 MW at ~5-15 GeV.



- Possible non-HEP missions under consideration
  - Nuclear physics and ADS development



# Physics Requirements November 2009 Workshop



|                                  | Proton Energy<br>(kinetic) | Beam Power                 | Beam Timing                       |
|----------------------------------|----------------------------|----------------------------|-----------------------------------|
| Rare Muon decays                 | 2-3 GeV                    | >500 kW                    | 1 kHz – 160 MHz                   |
| (g-2) measurement                | 8 GeV                      | 20-50 kW                   | 30- 100 Hz.                       |
| Rare Kaon decays                 | 2.6 – 4 GeV                | >500 kW                    | 20 – 160 MHz.<br>(<50 psec pings) |
| Precision K <sup>0</sup> studies | 2.6 – 3 GeV                | > 100 μA (internal target) | 20 – 160 MHz.<br>(<50 psec pings) |
| Neutron and exotic nuclei EDMs   | 1.5-2.5 GeV                | >500 kW                    | > 100 Hz                          |



## Since the November 2009 Workshop



- 3 GeV established as a workable energy for the rare processes program
- Reference Design established
  - Based on 3 GeV CW linac, 3-8 GeV pulsed linac, Recycler/MI modifications
  - Functional Requirements Specification (FRS) released
- Updated RD&D plan, resource loaded schedule (RLS), and cost estimate corresponding to reference design
- Project X collaboration now includes four Indian Institutes
- Potential for nuclear physics and/or energy programs under investigation



## Since the November 2009 Workshop



- DOE Science & Technology Review
  - "The Project X machine design is sufficiently well developed for the pre-CD0 stage."
  - "The physics program for Project X is not well defined at this time. The scientific community should be engaged in defining the potential program."
- Five Physics/Experiments Task Forces established

**Neutrinos** 

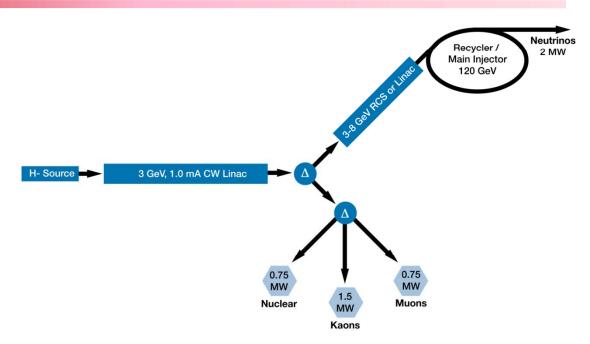
Kaons

Muons

**Nuclear Physics** 

**Nuclear Energy** 

Goal: define an initial experiment in each area Fall workshops


#### ARRA

- Significant investment in SRF infrastructure at Fermilab and development of domestic vendors
- New Fermilab Associate Director for Accelerators Stuart Henderson



### Reference Design





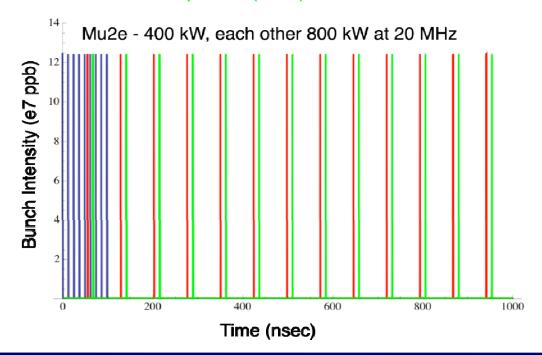
- 3 GeV, 1 mA, CW linac
- Greatly enhanced capabilities in the rare processes program
  - MW class beam power to multiple experiments with variable bunch configurations, simultaneous with neutrino operations
- Self-consistent concept for 3-8 GeV acceleration identified Pulsed linac preferred to RCS due to long-term flexibility

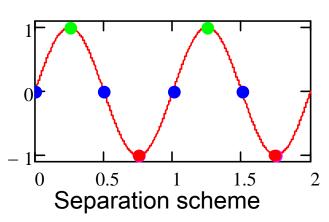


### **Project X Goals**



- Construct a 3 GeV continuous-wave superconducting H- linac, capable of delivering 1 mA of average beam current.
  - Supports rare processes and nuclear physics programs
  - Can support ADS development with beams energy <2 GeV</li>
- Construct a 3-8 GeV pulsed linac, utilizing an ILC-style RF system, with total beam power delivered to 8 GeV ovf 300 kW.
  - Required for the neutrino program
  - Establishes a path toward a muon based facility
- Upgrade the Recycler and Main Injector to provide ≥ 2 MW to a neutrino production target at 60-120 GeV.
  - Supports the long baseline neutrino program
- Simultaneous operations of the rare processes and neutrino programs





## Reference Design Operating Scenario



#### 1 μsec period at 3 GeV

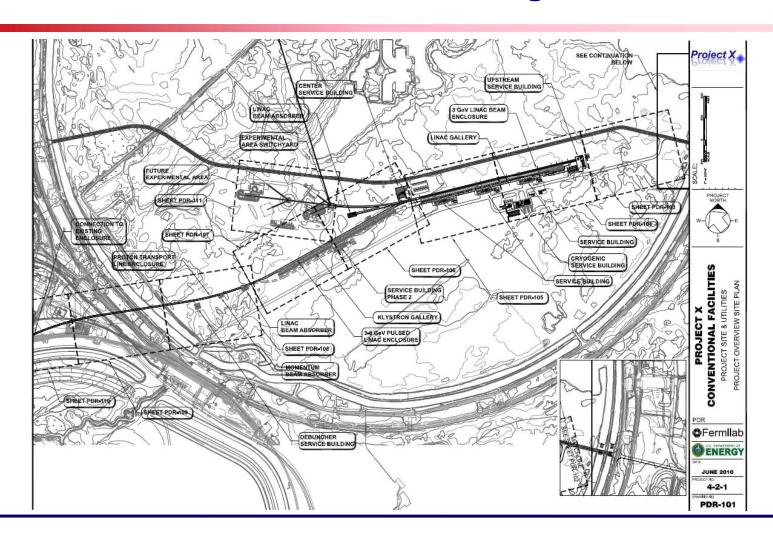
mu2e pulse (9e7) 162.5 MHz, 100 nsec Kaon pulse (9e7) 27 MHz Other pulse (9e7) 27 MHz 400 kW 800 kW 800 kW





## **Functional Requirements**

| Requirement | Description                                                                              | Value                                         |
|-------------|------------------------------------------------------------------------------------------|-----------------------------------------------|
| L1          | Delivered Beam Energy, maximum                                                           | 3 GeV                                         |
| L2          | Delivered Beam Power at 3 GeV                                                            | 3 MW                                          |
| L3          | Average Beam Current (averaged over >1 μsec)                                             | 1 mA                                          |
| L4          | Maximum Beam Current (sustained for <1 μsec)                                             | 10 mA                                         |
| L5          | The 3 GeV linac must be capable of delivering correctly format acceleration to 8 GeV     | atted beam to a pulsed linac, for             |
| L6          | Charge delivered to pulsed linac                                                         | 26 mA-msec in < 0.75 sec                      |
| L7          | Maximum Bunch Intensity                                                                  | 1.9 x 10 <sup>8</sup>                         |
| L8          | Minimum Bunch Spacing                                                                    | 3.1 nsec (1/325 MHz)                          |
| L9          | Bunch Length                                                                             | <50 psec (full-width half max)                |
| L10         | Bunch Pattern                                                                            | Programmable                                  |
| L11         | RF Duty Factor                                                                           | 100% (CW)                                     |
| L12         | RF Frequency                                                                             | 325 MHz and harmonics thereof                 |
| L13         | 3 GeV Beam Split                                                                         | Three-way                                     |
| P1          | Maximum beam Energy                                                                      | 8 GeV                                         |
| P2          | The 3-8 GeV pulsed linac must be capable of delivering correctly for (or Main Injector). | ormatted beam for injection into the recycler |
| Р3          | Charge to fill Main Injector/cycle                                                       | 26 mA-msec in <0.75 sec                       |
| P4          | Maximum beam power delivered to 8 GeV                                                    | 300 kW                                        |


## Functional Requirements

| Requirement | Description                                                                     | Value                                                   |
|-------------|---------------------------------------------------------------------------------|---------------------------------------------------------|
| M1          | Delivered Beam Energy, maximum                                                  | 120 GeV                                                 |
| M2          | Delivered Beam Energy, minimum                                                  | 60 GeV                                                  |
| M3          | Minimum Injection Energy                                                        | 6 GeV                                                   |
| M4          | Beam Power (60-120 GeV)                                                         | > 2 MW                                                  |
| M5          | Beam Particles                                                                  | Protons                                                 |
| M6          | Beam Intensity                                                                  | 1.6 x 10 <sup>14</sup> protons per pulse                |
| M7          | Beam Pulse Length                                                               | 9.5 μsec                                                |
| M8          | Bunches per Pulse                                                               | 504                                                     |
| M9          | Bunch Spacing                                                                   | 18.8 nsec (1/53.1 MHz)                                  |
| M10         | Bunch Length                                                                    | <2 nsec (fullwidth half max)                            |
| M11         | Pulse Repetition Rate (120 GeV)                                                 | 1.333 sec                                               |
| M12         | Pulse Repetition Rate (60 GeV)                                                  | 0.75 sec                                                |
| M13         | Max Momentum Spread at extraction                                               | $2 \times 10^{-3}$                                      |
| I1          | The 3 GeV and neutrino programs must operate simultaneously                     |                                                         |
| 12          | Residual Activation from Uncontrolled Beam Loss                                 | <20 mrem/hour (average)<br><100 mrem/hour (peak) @ 1 ft |
| I3          | Scheduled Maintenance Weeks/Year                                                | 4                                                       |
| 14          | 3 GeV Linac Operational Reliability                                             | 90%                                                     |
| 15          | 60-120 GeV Operational Reliabiltiy                                              | 85%                                                     |
| 16          | Facility Lifetime                                                               | 40 years                                                |
| U1          | Provisions should be made to support an upgrade of the CW linac                 | to support an average current of 4 mA.                  |
| U2          | Provisions should be made to support an upgrade of the Main Inje MW at 120 GeV. | ctor to support a delivered beam power of ~4            |
| U3          | Provisions should be made to deliver CW proton beams as low as 2                | l GeV                                                   |
| U4          | Provision should be made to support an upgrade to the CW linac s                | uch that it can accelerate Protons                      |



#### Reference Design Provisional Siting







## **CW Linac Technologies**



325 MHz SSR 2.5-160 MeV

650 MHz Elliptical 0.16-2 GeV

1.3 GHz Elliptical 2-3 GeV

| Section                          | Freq | Energy (MeV) | Cav/mag/CM | Туре                       |
|----------------------------------|------|--------------|------------|----------------------------|
| SSR0 (β <sub>G</sub> =0.11)      | 325  | 2.5-10       | 26 /26/1   | SSR, solenoid              |
| SSR1 ( $\beta_G$ =0.22)          | 325  | 10-32        | 18 /18/ 2  | SSR, solenoid              |
| SSR2 ( $\beta_G$ =0.4)           | 325  | 32-160       | 44 /22/4   | SSR, solenoid              |
| LB 650 ( $\beta_G$ =0.61)        | 650  | 160-520      | 42 /42/7   | 5-cell elliptical, doublet |
| HB 650 $(\beta_G = 0.9)$         | 650  | 520-2000     | 96 /24/12  | 5-cell elliptical, doublet |
| (ILC 1.3 ( $\beta_{\rm G}$ =1.0) | 1300 | 2000-3000    | 72 /9 /9   | 9-cell elliptical, quad    |



#### **Pulsed Linac**



- A superconducting pulsed linac will be used for acceleration from 3 to 8 GeV
  - ILC style cavities and cryomodules
    - 1.3 GHZ, β=1.0
  - ILC style rf system
    - 5 MW klystron
    - Four cryomodules per rf source
  - Must deliver 26 mA-msec to the Recycler every 0.75 sec. Options:
    - 2 mA x 2.2 msec pulses at 10 Hz
      - Six pulses required to load Recycler/Main Injector
    - 1 mA x 2.2 msec pulses at 20 Hz
      - Twelve pulses required to load Recycler/Main Injector
    - 1 mA x 4.4 msec pulses at 10 Hz
      - Six pulses required to load Recycler/Main Injector
    - 1 mA x 26 msec pulses at 10 Hz
      - One pulse required to load Main Injector



### RD&D Plan Goals



- RD&D = Research, <u>Design</u>, and Development
- RD&D Plan corresponds to the Reference Design
  - Most recent version available at:
     http://projectx-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=628

#### Goals

- Complete design of the Project X facility including all technical and conventional construction elements
- Identification of key accelerator physics and engineering challenges and validation of performance of critical technology items
  - Simulations, experimentation, and prototype construction as appropriate
- Development of an acquisition strategy for key technical elements, including development/qualification of vendors for critical components
- Development of a technical/cost/schedule baseline for construction
- Preliminary identification of performance upgrade paths



#### RD&D Plan Scope/Deliverables



#### Scope

 All activities required to bring Project X from the Reference Design through final design (CD-3).

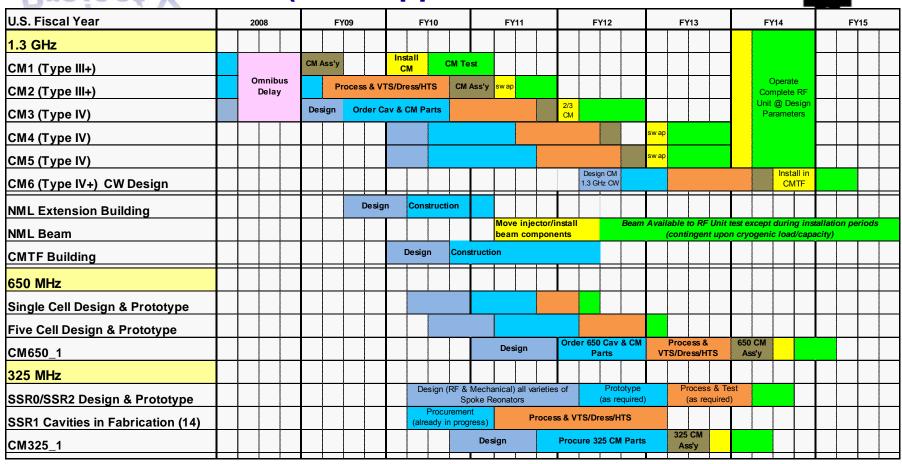
#### Deliverables

- All documentation required by the Department of Energy prior to authorizing construction
- Supporting technical R&D required to validate the design and establish fabrication methods

#### Assumed Critical Decision dates

| – C[ | D-0: January 2011   | Approve Mission Need                       |
|------|---------------------|--------------------------------------------|
| - C[ | D-1: July 2012      | Approve Alternative Selection & Cost Range |
| - C[ | D-2: August 2013    | Approve Performance Baseline               |
| - C[ | D-3: September 2014 | Approve Start of Construction              |
| – C[ | D-4: September 2019 | Project Complete                           |




# Project X/ILC/SRF Integrated Plan



- All srf programs at Fermilab are being integrated into a single, centrally managed program.
  - Effective FY2011
  - Brings all srf activities under the purview of the ILC/SRF Program Director
    - ILC and Project X management define requirements
- Discontinue the HIgh Intensity Neutrino Source (HINS) program as a stand-alone R&D program
  - Rescope the beam facility to support chopper and instrumentation development for Project X. Fund via Project X R&D
  - Retain low beta cavity development under the direction of the ILC/SRF Program Director
  - Eliminate HINS as a budget line item

# Project X

# SRF Development Plan (see Supplement I to MOU



| Design | Procure |             | Assemble | Install | Commission |
|--------|---------|-------------|----------|---------|------------|
|        |         | VTS         |          |         | & Operate  |
|        |         | Dress & HTS |          |         |            |



#### **Collaboration Plan**



- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
  - Organized as a "national project with international participation".
    - Fermilab as lead laboratory
    - International participation via in-kind contributions, established through bi-lateral MOUs.
      - IIFC is the first international agreement
  - Collaboration MOUs for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

ANL ORNL/SNS BARC/Mumbai

BNL MSU IUAC/Delhi

Cornell TJNAF RRCAT/Indore Fermilab SLAC VECC/Kolkata

LBNL ILC/ART

 Collaborators to assume responsibility for components and sub-system design, development, cost estimating, and potentially construction.



### Strategy/Timeline



- Next month: Complete all preliminary design, configuration, and cost range documentation for CD-0.
  - Functional Requirements Specification
  - Reference Design Report
  - RD&D Plan
  - Cost estimate/range
  - Resource Loaded Schedule
  - ⇒ Department of Energy briefing on November 16-17
- Continue conceptual development on outstanding technical questions
  - Baseline concept for the chopper
  - Concepts for marrying the 3-8 GeV pulsed linac to CW front end
  - Injection into the Recycler/Main Injector
  - Emphasis of srf development at all relevant frequencies
- The DOE has advised that the earliest possible construction start is FY2015
  - We are receiving very significant R&D support for Project X and SRF development (~\$40M in FY11, not including ARRA (stimulus))
- Planning for a five year construction schedule
  - ⇒ Project X could be up and running in ~2020



## **Summary**



- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
  - World leading programs in neutrinos and rare processes;
  - Potential applications beyond elementary particle physics;
  - Aligned with ILC, Muon Accelerators, and Nuclear Energy
- Project X design concept is well developed and well aligned with the requirements of the physics program:
  - 3 GeV CW linac operating at 1 mA: 3 MW beam power
  - 3-8 GeV pulsed linac injecting into the Recycler/Main Injector complex
- We are expecting CD-0 for Project X in early 2011
- Project X could be constructed over the period ~2015 2019