Muon Physics with Project X: Experiment

Jim Miller, BU November 8, 2010

What can we do with lots of muons from Project X?

- Muon to electron conversion
- μ→3e, μ→eγ
- Muon EDM

- $\mu^+e^- \rightarrow \mu^-e^+$ (muonium-antimuonium conversion)
- Muon Lifetime

Current and Proposed Limits on CLFV Muon Processes

mode	Current Limit	Proposed Limit in Current or Planned Experiment	Project X Limit
μ→eγ	1.2x10 ⁻¹¹	10 ⁻¹³	10 ⁻¹⁵
µ→еее	1.0x10 ⁻¹²		10 ⁻¹⁶
$\mu^+e^- \rightarrow \mu^-e^+$	8.3x10 ⁻¹¹		5x10 ⁻¹⁵
µ⁻Au→e⁻Au	7x10 ⁻¹³	6x10 ⁻¹⁷	3 x 10 ⁻¹⁹

μ to e Conversion

A muon converts to electron in the presence of a nucleus, with no neutrinos being produced

$$\mu^{-} + A(Z, N) \rightarrow e^{-} + A(Z, N)$$

$$\uparrow \qquad \uparrow$$

$$\ell_{e} = 0 \qquad \ell_{e} = +1$$

$$\ell_{\mu} = +1 \qquad \ell_{\mu} = 0$$

The muon are in atomic 1S orbits around the nucleus- this conserves E and p and also allows for exchanges of heavy new particles in the interaction

$$R_{\mu e} = \frac{\Gamma(\mu^{-} + (A, Z) \to e^{-} + (A, Z))}{\Gamma(\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1))}$$

• Charged Lepton Flavor Violation (CLFV)

Muon to Electron Conversion

Current limits:
$$R_{\mu e} = \frac{\mu^{-}Au \rightarrow e^{-}Au}{\mu^{-}Au \rightarrow \text{capture}} <7x10^{-13} \text{ (SINDRUM II)}$$

Also: $R_{\mu e} = \frac{\mu^{-}Ti \rightarrow e^{-}Ti}{\mu^{-}Ti \rightarrow \text{capture}} <4.3x10^{-12} \text{ (SINDRUM II)}$
 $R_{\mu e} = \frac{\mu^{-}Ti \rightarrow e^{-}Ti}{\mu^{-}Ti \rightarrow \text{capture}} <4.6x10^{-12} \text{ (TRIUMF)}$

New Mu2e/COMET proposals:

$$R_{\mu e} = \frac{\mu^{-}Al \to e^{-}Al}{\mu^{-}Al \to \text{capture}} < 6 \times 10^{-17} \text{ (90\% c.l.)}$$

x10000 improvement over current limit

Project X: another 2 orders of magnitude, to few x 10^{-19}

The Mu2e Measurement Method

- Stop negative muons in an aluminum target
- The stopped muons form muonic atoms

- Bohr r=n²/(m_µZ) , E =m_µZ²/n² : 2500x smaller r, 35000x more BE than e⁻ in Al–>well inside electron orbits \rightarrow hydrogen-like atom

- hydrogenic 1S Al: Bohr r ~20 fm, BE~500 keV
- muon and nuclear wavefunctions overlap
- Muon lifetime in 1S orbit of aluminum ~864 ns

(capture is roughly sum of reactions with protons in nucleus: $\mu^- + p \rightarrow \nu_\mu + n$

Look for a monoenenergetic electron from the neutrinoless conversion of a muon to an electron:

(40% decay, 60% nuclear capture), compared to 2.2 μ sec in vacuum

 $\mu^{-} +_{13}^{27} Al \rightarrow_{13}^{27} Al + e^{-}$ Electron energy~105 MeV

• What is actually measured and quoted:

$$R_{\mu e} = \frac{\mu^{-} + {}^{27}_{13} Al \rightarrow {}^{27}_{13} Al + e^{-}}{\mu^{-} + {}^{27}_{13} Al \rightarrow X + \nu_{\mu}(capture)}, \text{ where X=A(N,Z)+neutrons, protons,...}$$

• Goal: $R_{\mu e} < 6x10^{-17}$, 90% c.l. x10000 better than current limit

Dealing with radiative pion capture background

- Wait ~700 ns to start measurement, pion stopping rate is reduced by ~10¹¹ \rightarrow ~0.0007 events background, compared to ~4 events signal at R_{µe}=10⁻¹⁶
- Extinction (=between-pulse proton rate) < 10⁻⁹ gives ~0.07 counts
- Recognized and studied by time dependence, presence of e+

Mu2e Muon Beamline

Muons are collected, transported, and detected in superconducting solenoidal magnets

Signal to DIO Background

- Simulated DIO (electrons from Muon Decay in Orbit) tail + signal, assuming 1 MEV (FWHM) resolution on electrons around 105 MeV
- If geometry can be arranged to eliminate low energy electrons, the rate in the detector is quite low.
- If the energy resolution is good enough, the DIO electron background can be made negligible.
- Need to also eliminate pions and low energy noise from n,p, γ emanating from stopping target.
- Conceivable to go to very high rates—very different from most experiments!

Muon to Electron Conversion at Project X

- We will need a new detector design to handle Project X rates
 - Improved suppression of low energy n,p,gamma noise
- Strategy depends on results of Mu2e or COMET
- Do we see a signal at 10⁻¹⁶?
 - If yes, measure Z-dependence of conversion rate (nature of interaction depends on Z) with good statistics..
 - To measure high-Z targets, need beam which clears pions more quickly due to short muonic atom lifetime, many more muons to establish magnitude of CLFV in several nuclei with precision
 - If no, go for few x 10^{-19} sensitivity in Al or Ti.
 - Need better energy resolution, may need better cosmic ray rejection
- Pulsed Beam
 - 10 ns wide pulse, 3x10¹² Stopped muons/s, 10⁻¹¹ extinction, 2 MW if no improvements in collection efficiency of muons

Concept for the Project X $\mu \rightarrow$ e Conversion Experiment

Muon ring: rotate phase (narrow t, wide p)→(wider t, narrow p)
Narrow p beam stops in thin target
Ring also eliminates pion and other backgrounds.
Pulsed Beam, 100x more flux than Mu2e, 1000 Hz, 10 ns wide
Detector/Spectrometer which greatly suppresses backgrounds (e.g. DIO)
Y. Kuno will explain the new concept detail

$\mu^+ \rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$

- Both decays require coincidence measurements
 - DC beam may be best, but...
 - A pulsed beam with spacing <~ muon lifetime would be OK, maybe even beneficial if there are prompt particles (π,e,..) in the beam which dissipate quickly with time
 - Accidentals will limit maximum allowable beam: in each case the final particles are sitting in a sea of electron and positron backgrounds at similar energies- contrast with μ->e
 - $\mu^+ \rightarrow e^+ e^+ e^-$ is the most promising for better precision
 - Sufficient DC beam is available at PSI for 10⁻¹⁴ limits but not 10⁻¹⁵

 $\mu^+ \rightarrow e^+ \gamma$

- MEG Experiment now under way at PSI plans a 10⁻¹³ measurement (current limit 1.2x10⁻¹¹)
- Stop positive muons in thin target
- Detect back-to-back 53 MeV e⁺ and γ
- But the background of e⁺ from $\mu \rightarrow e^+ vv$ peaks at 53 MeV, leading to significant accidentals. Presents huge challenge to improving limit.
- Cut background with superior resolution on
 - Angle between $e^{\scriptscriptstyle +}$ and γ
 - Energies of e^+ and γ
 - Vertex position
 - $t_e = t_{\gamma}$
 - MEG: Rate dependence of background limits stop rate to <few x 10⁷ Hz

MEG detection technique

MEG Experiment Status

- First result, BR<2.8x10⁻¹¹ (90% c.l.)
 (Compare MEGA, 1.2x10⁻¹¹)
- Ultimate goal ~ 10⁻¹³

$\mu^+ \rightarrow e^+ \gamma$ at Project X

- Goal 10⁻¹⁵
 - More muons would be needed; very challenging because of accidental backgrounds at high rates
 - Background proportional to Rate x $\sigma_{E\gamma}^2$ x σ_{Ee} x σ_t x σ_{θ}^2
 - Use large area target to improve selectivity of vertex cut against accidentals
 - Thinner target to reduce multiple scattering, background pair production in target
 - Improve energy, angle resolutions (Increase distance of calorimeter and tracker from target, thin close-in tracker to improve vertex location, go to LYSO array or pair spectrometer for photon...)
 - A pulsed beam is acceptable provided pulse spacing is not much larger than the muon lifetime. Pulsing may be beneficial if there are prompt beam-related backgrounds, from pions or beam positrons for example.
 - May be possible to handle a stopping rate up to 5x10⁸, with a detection probability of 0.1, can get to 10⁻¹⁵ in one year.

$\mu^+ \rightarrow e^+ e^+ e^-$

- No gamma to detect: makes it 'easier' than $\mu^+ \rightarrow e^+ \gamma$
- Current BR limit 1x10⁻¹², background ~1x10⁻¹³, beam 6x10⁶ Hz
- Proposed Limit 1x10⁻¹⁶, background ~1x10⁻¹⁶, beam 1x10¹⁰ Hz
- ("Physics at a future Neutrino Factory & super-beam facility", hep-ph/0710.4947)
 - Main background: accidental e⁺e⁻ from Bhabha scattering of e⁺ from ordinary decay or from pair production in the target
 - Make target thinner (narrow p distribution or throw away muons)
 - Background scales as (vertex resolution)/(target area)
 - Vertex resolution dominated by scattering in first layer of detector
 - Bring the detector closer to the target, make it thinner: x10
 - Greatly increase the area of the target x10
 - Accidental rate scales as (momentum resolution)²
 - 10% (previous expt) \rightarrow 1% gives x100
 - Reduction from collinearity requirement on e^+ with e^+e^- pair : x100
 - Dramatic background reduction: require each e⁺e⁻ pair combination have an opening angle of at least 30 degrees
 - But this will reduce sensitivity to some physics channels.

Muon EDM

- A non-vanishing permanent EDM in an elementary particle is a violation of both T and P symmetries.
- In the SM, predicted EDMs are extremely small → any EDM is a sign of new physics
- Assuming CPT invariance, a non-vanishing EDM implies CP violation.
- The currently known extent of CP violation does not explain baryon asymmetry of the universe.
- Searching for EDM's is one of the most promising ways to look for CP violation → Many high-priority efforts to measure EDM's of neutron, proton, electron, ions
- The muon is by far the best candidate outside the first generation of particles for improvement of EDM measurement.

Muon EDM

- Present limit on muon EDM determined parasitically in muon g-2 storage ring experiment, E821: $d_{\mu} < 1.8 \times 10^{-19}$ e-cm
- Assuming lepton-universality, $d_e < 2.2x10^{-27}$ e-cm implies $d_\mu \simeq (\frac{m_\mu}{m_e})2.2x10^{-27} < 5x10^{-25}$ e-cm
- Many models predict an EDM well above naïve scaling, up to ~10⁻²² e-cm.
- A measurement bettering this limit is called for.

Muon EDM Experimental Approach

• In a storage ring, the spin precession rate depends on E and B: $\omega = \omega_e + \omega_a$

$$\mathbf{\omega}_{\mathbf{e}} = \frac{\eta}{2} \frac{e}{m} (\mathbf{\beta} \mathbf{x} \mathbf{B} + \mathbf{E}), \qquad \mathbf{\omega}_{\mathbf{a}} = \frac{e}{m} \left[a\mathbf{B} - (a - \frac{1}{\gamma^2 - 1})\mathbf{E} \right]$$

 η is EDM analogue of g for MDM, $d_{\mu} \simeq \eta x 4.7 x 10^{-14}$ e-cm

a = (g - 2) / 2 is the magnetic anomaly

- Choose γ^2 , E, B so that $\omega_a = 0 \rightarrow$ "Frozen spin method"
- Trap muons in a circular storage ring, with initial polarization directed along or opposite the momentum, for several muon lifetimes
- With ω_a =0, only ω_e acts on the spin. β xB dominates, ω_e is directed radially, the polarization vector acquires a vertical component which increases linearly with time. This will lead to a difference in the number of decay electrons going up compared to down.

Muon EDM Sensitivity

 Small ring: p_µ=125 MeV/c, B =1 T, E=0.64 MV/m, R=0.42 m, P=0.9, A=0.3 (see Adelman, et al., hep-ex/0606034)

$$E \simeq aB\beta\gamma^{2}$$

$$\sigma_{d_{\mu}} = \frac{\sqrt{2}\hbar a\gamma}{4\tau EAP\sqrt{N}} = \frac{1.1x10^{-16} \text{ e-cm}}{\sqrt{N}}$$

• At PSI, continuous beam, one muon at a time \rightarrow 2x10⁵/s=4x10¹²/year \rightarrow

$$\sigma_{d_{\mu}} = 5x10^{-23} \text{ e-cm}$$

- Statistics Limited
- Pulsed beam, ~5x10¹⁰ Hz, \rightarrow Stat error $\sigma_{d_{\mu}} = 1x10^{-25}$ e-cm
- Use resonant injection: in small ring, need beam pulses timed to multiple of cyclotron frequency, followed by measurement period of ~10µs
- Need highly polarized muons

Muon Lifetime Experiment

- MuLan, at PSI has just published the best measurement of the muon lifetime, to 1 ppm uncertainty.
- Gives the best value for the Fermi constant G_F (0.6 ppm)

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1 + \Delta q)$$

- Δq contains well-known phase space and both QED and hadronic radiative corrections
- G_F is one of the fundamental constants of the SM

Muon Lifetime: Main Sources of Uncertainty in MuLan

Effect uncertainty in ppm	R06		R07
Kicker stability	0.20		0.07
Spin precession / relaxation	0.10		0.20
Pileup		0.20	
Gain stability		0.25	
Upstream muon stops		0.10	
Timing stability		0.12	
Clock calibration		0.03	
Total systematic	0.42		0.42
Statistical uncertainty	1.14		1.68

- Dominated by statistical uncertainty- more muons, go to pulsed beam
- With pulsed beam and good extinction, eliminate kicker
- Spin precession: $N = N_0 e^{-\lambda t} (1 + A \sin(\omega t + \phi))$
 - Add equal contribution from segment on opposite side of detector to cancel- could be improved with bigger array, more careful balancing
 - Eliminate with unpolarized beam
- Pileup: increased segmentation on detector
- Gain and time stability: can be improved
- Put whole detector in vacuum, eliminate beam pipe in path of decay positrons.
- Project X goal: at least x10 in lifetime measurement

Muonium (M) Production

- Muonium, M: Atomic bound state of μ^+ and e^-
- Like hydrogen atom, but no strongly interacting particles; two *point* particles
- Thermal M produced near surface of SiO₂ powder in vacuum, few x0.1% efficiency.
- Most measurements using M are statistics limited

Muonium Hyperfine Structure and 1s-2s Interval

- Ground state HFS (LAMPF, RAL, KEK):
 - $(F,M_F),(M_J,M_\mu)$ 1: (1,1), (1/2,1/2)

2: (1,0),(1/2,-1/2)
 3: (1,-1),(-1/2,-1/2)
 4: (0,0), (-1/2,1/2)

- ν_{12} and ν_{34} involve muon spin flip.

- v_{12} – v_{34} gives μ_{μ}
- $v_{12}+v_{34}$ gives HFS at B=0. Comparison with theory gives one of the most stringent

tests of QED: gives value of α with bound state QED to compare with free QED from the electron magnetic anomaly.

- Intrinsic linewidth limited by muon lifetime- won't help to cool
 - LAMPF experiments used 'Old Muonium' to get ~factor two improvement in linewidth- need a pulsed beam
- 1s-2s transition energy gives m_e/m_μ and q_e/q_m (KEK and RAL)

Muonium to Antimuonium Conversion $M \rightarrow \overline{M}$

- $\mu^+ e^- \rightarrow \mu^- e^+ |\Delta L_i| = 2$
 - − PSI Experiment: Total of 5.7×10^{10} Muonium atoms → probability $<8 \times 10^{-11}/S_B$ probability (90% c.l.)
 - S_B^{-1} is a theory-dependent correction for magnetic field which splits energy of M-Mbar
 - Detect both energetic e⁻ from μ⁻ decay and low energy e⁺, reconstruct vertex, and look for e⁺ annihilation gamma
 - Signal amplitude $= \sin^2 \frac{\delta t}{2\hbar} e^{-\lambda_{\mu}t} \approx \left(\frac{\delta t}{2\hbar}\right)^2 e^{-\lambda_{\mu}t}$: wait ~2 lifetimes so that beam-related accidental backgrounds decrease by x10: use pulsed beam!
 - At least two orders of magnitude improvement in rate is possible before background becomes an issue:
 - µ→3e2v
 - $\mu^{\scriptscriptstyle +}$ decays to $e^{\scriptscriptstyle +},\,e^{\scriptscriptstyle +}$ transfers energy to $e^{\scriptscriptstyle -}$
 - At least a factor of 10000 improvement in rate can be achieved at Project X- an experiment must be designed to handle the rate.

What Kind of Beams Do we Need?

- Muon to electron conversion
 - Very low momentum negative muons, (p<70 MeV/c), or very narrow momentum range, in order to stop in a thin target
 - Polarization not needed
 - Pulsed proton beam, pulse time width as narrow as possible, pulse width<<(lifetime muonic atom). 80 ns<(lifetime muonic atom)<1000 ns (depends on Z). Very high extinction: 10⁻¹¹ or 10⁻¹²
 - Minimum beam pulse spacing at least 2 times muonic atom lifetime: 500 ns<(beam spacing)<2000 ns (depends on Z). Extinction of beam between pulses 10¹²
 - For FFAG muon ring, kickers limit repetition rate to ~1000 Hz, need beam width<10 ns
 - No pions in beam line, no late-arriving high momentum muons
 - No high energy electrons (>100 MeV), or other particles which could produce high energy electrons, in beam line
 - Average intensity x100 compared to Mu2e run plan (20kW \rightarrow 2 MW)
 - − Mu2e: $3x10^{10}$ Hz stopping rate → Project X: $3x10^{12}$ Hz

What Kind of Beams Do we Need?(2)

- Muon EDM: Muon Storage Ring
 - Highly polarized muons, both signs, momentum ~100 MeV/c-600 MeV/c, momentum range 1%, phase space well-matched to the storage ring
 - Pulsed beam, beam pulse width may have to be narrow to inject properly into storage ring
 - Pulses may have to be spaced closely (tens ns) for resonant injection into storage ring
 - Load storage ring every ~10 μs (may need to be larger, depending on injection scheme into EDM storage ring). Extinction during measurement periods <10^{-5}
 - Very large flux of muons needed for precision experiment, take all the beam available.
 - For planned 10^{-25} e-cm limit, 5×10^{10} Hz, NP²=1×10¹⁸ total polarized muons.
 - Effective rate will depend on polarization of beam.

More about Beams(3)

- Muon Lifetime
 - Unpolarized muons
 - Positive muons, no pions or positrons
 - Pulsed beam, pulse width ~1 μ s or less, pulse spacing ~ 20 μ s, excellent extinction (better than 10⁶) between pulses
 - Stop in thin target: Narrow muon beam momentum, or very low momentum
 - Muon flux several x 10⁹ Hz would give 0.1 ppm, could do this with 25 kW available from Booster now, but the required beam structure is not available.
- Muonium
 - Polarized positive muons, very low energy and/or very narrow momentum range to stop efficiently in a very thin target; could be surface muons
 - Production is inefficient, only few tenths % of incident surface muons make M
 - Most experiments could use at least 100x more muonium rate
 - Most experiments could benefit from pulsed beams: width ~ 100 ns, pulse spacing ~ 10 muon lifetimes.

More about Beams(4)

- $\mu^+ \rightarrow e^+ \gamma$
 - Needs $\mu^+\!,$ very low p or narrow p spread μ^+ to stop in a very thin target
 - DC beam is best for this coincidence experiment
 - MEG(PSI) has a DC surface μ^+ beam that can deliver $10^8~\text{Hz}$ muons.

sensitivity goal (MEG)	10 ⁻¹⁴
running time	10 ⁷ s
detection efficiency	0.1
macro duty cycle	1
stop rate	10 ⁸

- To get to 10⁻¹⁵, 10⁹ Hz muons are needed; PSI may be able to upgrade their beam line
- A pulsed beam at Project X, with pulse spacing ~muon lifetime, would suffice to replace the DC beam.

More about Beams(5)

- $\mu^+ \rightarrow e^+ e^+ e^-$
 - Needs $\mu^{+,}$ very low p or narrow p spread to stop in a very thin target. Polarization not necessary
 - DC beam is best for this coincidence experiment
 - No proposals are on the table at this time

sensitivity goal	10 ⁻¹⁶
running time	10 ⁷ s
detection efficiency	0.1
macro duty cycle	1
stop rate	1010

- Could PSI upgrade their beam line to 10^{10} ?
- A pulsed beam at Project X, with pulse spacing ~muon lifetime, would suffice to replace the DC beam.

Approaches to Delivering Muon Beam to μ to e Conversion Experiment

- Muon storage ring (Y. Kuno):
 - Solenoid collection around production target (Mu2e scheme)
 - Solenoid transport
 - Injection into FFAG
 - Rotate phase space to get narrow momentum distribution
 - Eliminate pion background
 - Limits on maximum kicker rates may limit pulse repetition rate to ~1000 Hz
- Cooled RF and ionization beams (C. Ankenbrandt)
 - Combination of RF acceleration and degrading of energy in material.
 - Likely have advantage of high duty factor
 - May get larger flux because of collection of forward pions
 - Will produce a muon with little pion, electron, ...background.

Conclusions

- An intense pulsed muon beam as proposed in Project X is ideally suited to dramatically increase sensitivities:
 - Stopped muon experiments requiring very low energy, narrow momentum muons
 - μ -, muon to electron conversion-especially good fit to Project X
 - μ +, M-Mbar
 - μ +, muon lifetime
 - muon EDM- requires polarized μ + and μ -, 125-600 MeV/c
- It is less clear whether $\mu \rightarrow e\gamma$ or $\mu \rightarrow 3e$ can benefit
- A pulsed beam is superior to a DC beam for most applications.
- For stopping experiments, muons with very low momenta or narrow momentum spread are needed so that muons stop in thin targets
- High muon polarization is needed for Muon EDM and M-Mbar, irrelevant for CLFV experiments, and undesirable for the muon lifetime measurement
- High duty factor is usually desired if the kickers which deliver beam to the different applications can handle it.
- Low duty factor may be needed for some kicker schemes, e.g. PRISM

Cold Muon Production

Part of proposed JPARC g-2 Experimental Approach Predicting 1 cold muon per 2x10⁵ surface muons Beam should be pulsed (333 uA) Graphite target (20 mm) Surface muon beam (28 MeV/c, 4x10⁸/s) Muo (300

3 GeV proton beam

New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam

Muonium Production (300 K ~ 25 meV⇒2.3 keV/c)

ALD all

Super Precision Magnetic Field (3T, ~1ppm local precision)

Muon storage

Step2: Injection & storage

Ultra Cold ut Source

0.66 m diameter γ=3 and B=3 [T] (note: 14 m for E821)

Step3: Detect decay e⁺

Muon LINAC (300 Mav/c)

μ⁺ beam

MEG Experiment

- Uncertainty in angles between γ and e^+
 - σ_{θ} =18 mrad, σ_{ϕ} =10 mrad
- Uncertainty in photon first interaction position
 - $\sigma_x=5 \text{ mm}, \sigma_y=6 \text{ mm}$
- Uncertainty in t_{γ}
 - 148 ps
- Uncertainty in gamma energy
 - σ_{εγ}~1 MeV
- Backgrounds
 - RMD: $\mu^+ \rightarrow e^+ + v_e + \overline{v}_{\mu} + \gamma$
 - Accidentals between e+ from $\mu^+ \rightarrow e^+ + v_e + \overline{v}_{\mu}$ and photons from
 - RMD
 - Positrons annihilating in flight
 - Bremsstrahlung
 - Rate and therefore sensitivity limited by accidental backgrounds
 - Background proportional to Rate x $\sigma_{\text{E}\gamma}{}^2$ x σ_{Ee} x σ_{t} x $\sigma_{\theta}{}^2$
 - MEG: Rate dependence of background limits stop rate to <few x 10⁷ Hz