Why μ to e conversion at <10⁻¹⁸?

Alejandro Ibarra Technische Universität München

The Project-X muon workshop November 8th 2010

• Introduction

• Constraints on new physics from lepton flavour violation

- Model independent analysis
- Extra-dimensional models
- Little Higgs models
- Supersymmetric models
- See-saw models
- The connection LFV cosmology:

Testing the origin of the matter-antimatter asymmetry through μ to e conversion experiments at $<10^{-18}$.

Brief history of leptonic physics

- Leptonic Lagrangian (1967 1998)
- $-\mathcal{L}_{\text{lep}} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + \text{h.c.}$

$$U(3)_{e_R} \times U(3)_L \longrightarrow U(1)_e \times U(1)_\mu \times U(1)_\tau$$

Consistent with experiments searching for neutrinoless double beta decay and rare lepton decays, but not with neutrino oscillation experiments.

• Leptonic Lagrangians (1998 - ?)

$$-\mathcal{L}_{lep} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + (h_\nu)_{ij} \bar{\nu}_{Ri} L_j \tilde{\phi} + h.c.$$

$$U(3)_{e_R} \times U(3)_L \longrightarrow U(1)_{\text{lep}}$$
 Dirac Mass

$$-\mathcal{L}_{\text{lep}} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + \frac{(\alpha_\nu)_{ij}}{\Lambda} L_i \tilde{\phi} L_j \tilde{\phi} + \text{h.c.}$$

 $U(3)_{e_R} \times U(3)_L \longrightarrow \text{nothing}$ Majorana Mass

- Charged leptons massive
- neutrinos massless
- lepton flavour conserved
- total L number conserved

- Charged leptons massive
- neutrinos massive
- lepton flavour violated ν oscillations
- total L number conserved or violated

• Challenge: find evidences of the next term in the effective Lagrangian

$$-\mathcal{L}_{lep} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + (h_\nu)_{ij} \bar{\nu}_{Ri} L_j \tilde{\phi} + \sum_k \frac{\alpha_k}{\Lambda_k^2} \mathcal{O}_k^{D=6} + \text{h.c.}$$
$$-\mathcal{L}_{lep} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + \frac{(\alpha_\nu)_{ij}}{\Lambda} L_i \tilde{\phi} L_j \tilde{\phi} + \sum_k \frac{\alpha_k}{\Lambda_k^2} \mathcal{O}_k^{D=6} + \text{h.c.}$$

LFV in the charged lepton sector

Some dimension 6 operators are:

Two leptons,
one gauge boson
(+ one higgs) $\bar{e}_{Ri}\sigma^{\mu\nu}L_j\phi B_{\mu\nu}$
 $\bar{e}_{Ri}\sigma^{\mu\nu}\tau_I L_j\phi W^I_{\mu\nu}$ $\mu \rightarrow e\gamma$
 $\tau \rightarrow \mu\gamma$
 $Z \rightarrow \mu e$ Four leptons $(\bar{L}_i\gamma^{\mu}L_j)(\bar{L}_k\gamma_{\mu}L_l)$
 $(\bar{e}_i\gamma^{\mu}e_j)(\bar{e}_k\gamma_{\mu}e_l)$
 $(\bar{L}_i\gamma^{\mu}e_j)(\bar{e}_k\gamma_{\mu}L_l)$ $\mu \rightarrow eee$
 $\tau \rightarrow \mu\mu\mu$ Two leptons,
two quarks $(\bar{L}_i\gamma^{\mu}E_j)(\bar{Q}_k\gamma_{\mu}Q_l)$
 $(\bar{L}_i\gamma^{\mu}e_j)(\bar{u}_k\gamma_{\mu}Q_l)$ $\mu \rightarrow eN$
 $\tau \rightarrow \pi\mu$
 $\tau \rightarrow \eta\mu$

(+ dim. 6 operators that violate total lepton number)

Neutrino masses violate flavour \Rightarrow they induce all these operators

If the only source of LFV are neutrino masses, the dim-6 operators are very suppressed, giving

$$BR(\mu \to e\gamma) \sim \frac{3\alpha}{32\pi} \left(\frac{\Delta m_{\nu}^2}{M_W^2}\right)^2 \sin^2\theta$$

The predictions for the rare lepton decays are

BR(
$$\mu \rightarrow e\gamma$$
) $\simeq 10^{-57}$, BR($\tau \rightarrow \mu\gamma$) $\simeq 10^{-54}$, BR($\tau \rightarrow e\gamma$) $\simeq 10^{-57}$,

Well consistent with experiments searching for rare charged lepton decays.

Searches for Lepton Number Violation

If the only source of LFV are neutrino masses, the dim-6 operators are very suppressed, giving

$$BR(\mu \to e\gamma) \sim \frac{3\alpha}{32\pi} \left(\frac{\Delta m_{\nu}^2}{M_W^2}\right)^2 \sin^2\theta$$

The predictions for the rare lepton decays are $BR(\mu \rightarrow e\gamma) \simeq 10^{-57}$, $BR(\tau \rightarrow \mu\gamma) \simeq 10^{-54}$, $BR(\tau \rightarrow e\gamma) \simeq 10^{-57}$,

Well consistent with experiments searching for rare charged lepton decays.

However, there could be new sources of LFV apart from neutrino masses

$$-\mathcal{L}_{lep} = (h_e)_{ij} \bar{e}_{Ri} L_j \phi + \frac{(\alpha_\nu)_{ij}}{\Lambda} L_i \tilde{\phi} L_j \tilde{\phi} + \sum_k \frac{\alpha_k}{\Lambda_k^2} \mathcal{O}_k^{D=6} + \text{h.c.}$$

Scale of lepton
number violation $\stackrel{?}{\neq}$ Scale of lepton
flavour violation

Also, for the same suppression Λ , the coefficient of the dimension 5 operator could be much smaller than the one of the dimension 6 operator

Bounds on new physics from $\mu \rightarrow e\gamma$

Lowest dimension operator which induces $\mu \rightarrow e\gamma$

$$-\mathcal{L} = m_{\mu}\bar{\mu}(f_{M1}^{\mu e} + \gamma_5 f_{E1}^{\mu e})\sigma^{\mu\nu}eF_{\mu\nu} + \text{h.c.}$$

The rate for the rare muon decay is:

$$BR(\mu \to e\gamma) = \frac{96\pi^3 \alpha}{G_F^2} (|f_{E1}^{\mu e}|^2 + |f_{M1}^{\mu e}|^2)$$

The present experimental bound BR($\mu \rightarrow e\gamma$)<1.2×10⁻¹¹ gives:

$$|f_{E1}^{\mu e}|, |f_{M1}^{\mu e}| \lesssim 10^{-12} \mathrm{GeV}^{-2}$$

Naively,

$$f^{\mu e} \sim \frac{1}{\Lambda^2} \longrightarrow \Lambda \gtrsim 300 \text{TeV}$$

In most models the contact interaction arises as a result of quantum effects (new particles interacting with the muon and the electron circulating in loops).

$$f^{\mu e} \sim rac{ heta_{\mu e}^2 lpha}{\Lambda^2}$$

Then, the present bound on BR($\mu \rightarrow e\gamma$) requires

$$\Lambda \gtrsim 20 \text{TeV}$$
 if $\theta_{\mu e} \sim \frac{1}{\sqrt{2}}$
 $\theta_{\mu e} \lesssim 0.01$ if $\Lambda \sim 300 \text{GeV}$

A large mass scale for the new particles and/or small coupling between the electron or muon with the new particles.

With an experiment searching for μ to e conversion at 10⁻¹⁸,

Far beyond the reach of collider searches!

$$\Lambda \gtrsim 350 \text{ TeV}$$
 if $\theta_{\mu e} \sim \frac{1}{\sqrt{2}}$
 $\theta_{\mu e} \lesssim 5 \times 10^{-4}$ if $\Lambda \sim 300 \text{ GeV}$

Rare tau decays

Complementary probe of lepton flavour violation.

Implications for Physics BSM

DRAMATIC! Many extensions of the Standard Model postulate new particles at the electroweak scale (hierarchy problem, "WIMP miracle", cosmic ray anomalies...)

Recall: the present bound on BR($\mu \rightarrow e\gamma$) requires

$$\Lambda \gtrsim 20 \text{TeV}$$
 if $\theta_{\mu e} \sim \frac{1}{\sqrt{2}}$
 $\theta_{\mu e} \lesssim 0.01$ if $\Lambda \sim 300 \text{GeV}$

Very stringent constraints on models. Or on the positive side, detection might be around the corner.

This is the case for:

- Supersymmetric models
- (SUSY) see-saw models
- Extra dimensional models
- Little Higgs models

• . .

• Extra-dimensional models

"Anarchic" Randall-Sundrum model

• Little Higgs models (with T-parity)

 $Br(\mu \rightarrow e\gamma)$

Mirror lepton masses between 300 GeV-1.5 TeV Generic angles and phases

Supersymmetry

Many attractive features. However, SUSY has in flavour and CP its Achiles' heel. Even the minimal model introduces many new sources of flavour and CP violation.

1- Flavour and CP are badly violated at tree level:

$$W_{MSSM} = \mathbf{Y}_{ij}^{e} e_{Ri}^{c} L_{j} H_{d} + \mathbf{Y}_{ij}^{d} d_{Ri}^{c} Q_{j} H_{d} + \mathbf{Y}_{ij}^{u} u_{Ri}^{c} Q_{j} H_{u} + \mu H_{u} H_{d} + \frac{1}{2} \lambda_{ijk} L_{i} L_{j} e_{k}^{c} + \lambda_{ijk}^{\prime} L_{i} Q_{j} d_{k}^{c} + \frac{1}{2} \lambda_{ijk}^{\prime \prime} u_{i}^{c} d_{j}^{c} d_{k}^{c} + \mu_{i}^{\prime} L_{i} H_{u}.$$

$$\begin{split} |\lambda_{1j1}\lambda_{1j2}| < 7 \times 10^{-7} & \text{From } \mu \to 3e \\ |\lambda_{231}\lambda_{131}| < 7 \times 10^{-7} & \text{From } \mu \to 3e \\ |\lambda_{231}\lambda_{232}| < 5.3 \times 10^{-6} & \text{From } \mu\text{Ti} \to e\text{Ti at one loop} \\ |\lambda_{232}\lambda_{132}| < 8.4 \times 10^{-6} & \text{From } \mu\text{Ti} \to e\text{Ti at one loop} \\ |\lambda_{233}\lambda_{133}| < 1.7 \times 10^{-5} & \text{From } \mu\text{Ti} \to e\text{Ti at one loop} \\ |\lambda_{122}\lambda'_{211}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{132}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{121}\lambda'_{111}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0 \times 10^{-8} & \text{From } \mu\text{Ti} \to e\text{Ti at tree level} \\ |\lambda_{231}\lambda'_{311}| < 4.0$$

Supersymmetry

Many attractive features. However, SUSY has in flavour and CP its Achiles' heel. Even the minimal model introduces many new sources of flavour and CP violation.

1- Flavour and CP are badly violated at tree level:

$$W_{MSSM} = \mathbf{Y}_{ij}^{e} e_{Ri}^{c} L_{j} H_{d} + \mathbf{Y}_{ij}^{d} d_{Ri}^{c} Q_{j} H_{d} + \mathbf{Y}_{ij}^{u} u_{Ri}^{c} Q_{j} H_{u} + \mu H_{u} H_{d} + \frac{1}{2} \mathbf{y}_{ik} \mathbf{y}_{i} \mathbf{p}_{e} e_{k}^{c} + \mathbf{y}_{ik} \mathbf{y}_{i} \mathbf{p}_{e} d_{k}^{c} + \frac{1}{2} \mathbf{y}_{i} \mathbf{y}_{i} \mathbf{p}_{e}^{c} d_{k}^{c} d_{k}^{c}$$

2- Soft SUSY breaking terms in general violate flavour

$$\begin{aligned} -\mathcal{L}_{\text{soft}}^{\text{lep}} &= (\mathbf{m}_{L}^{2})_{ij}\tilde{L}_{i}^{*}\tilde{L}_{j} + (\mathbf{m}_{e}^{2})_{ij}\tilde{e}_{Ri}^{*}\tilde{e}_{Rj} + \left(\mathbf{A}_{eij}\tilde{e}_{Ri}^{*}\tilde{L}_{j}H_{d} + \text{h.c.}\right) \\ & \overbrace{\mathbf{X}_{i}}^{\mathbf{X}_{i}} \underbrace{\mathbf{y}_{i}^{\mathbf{Y}_{i}}}_{\mathbf{I}_{i}} \underbrace{\mathbf{y}_{i}^{\mathbf{Y}_{i}}}_{\mathbf{I}_{i}} \underbrace{\mathbf{y}_{i}^{\mathbf{Y}_{i}}}_{\mathbf{I}_{i}} \\ & \text{Back of the envelope calculation of } \mathbf{BR}(l_{i} \rightarrow l_{j}\gamma): \\ & \mathbf{BR}(\ell_{j} \rightarrow \ell_{i}\gamma) \simeq \frac{\alpha^{3}}{G_{F}^{2}} \frac{|(\mathbf{m}_{L}^{2})_{ij}|^{2}}{m_{S}^{8}} \tan^{2}\beta \ \mathbf{BR}(\ell_{j} \rightarrow \ell_{i}\nu_{j}\bar{\nu}_{i}) \\ & (\mathbf{m}_{L}^{2})_{12}/m_{S}^{2} < 3 \times 10^{-4} \end{aligned}$$

 $(\mathbf{m}_L)_{12}/m_S < 5 \times 10$ $(\mathbf{m}_L^2)_{13}/m_S^2 < 0.09$ $(\mathbf{m}_L^2)_{23}/m_S^2 < 0.09$ (for m_s=400 GeV and tan β =10)

Possible explanation: messenger sector does not distinguish among flavours (gravity mediation, gauge mediation, gaugino mediation)

See-saw models

The smallness of neutrino masses can be very elegantly explained introducing new heavy degrees of freedom:

After the EW symmetry breaking, generates tiny Majorana neutrino masses, if the scale of new physics Λ is large.

See-saw models

The smallness of neutrino masses can be very elegantly explained introducing new heavy degrees of freedom:

The new degrees of freedom induce LFV processes, with rates suppressed by the large mass scale of the new particles. Good agreement with experiments, but the model is unnatural...

An explicit hierarchy problem

The see-saw Lagrangian is:

$$-\mathcal{L}_{\text{lep}} = (\mathbf{Y}_{\nu})_{ij} \bar{\nu}_{Ri} L_j \tilde{\phi} - \frac{1}{2} M_{ij} \bar{\nu}_{Ri} \nu_{Rj}^c + \text{h.c.}$$

The Higgs doublet interacts with heavy degrees of freedom

An explicit hierarchy problem

The see-saw Lagrangian is:

$$-\mathcal{L}_{\rm lep} = (\mathbf{Y}_{\nu})_{ij} \bar{\nu}_{Ri} L_j \tilde{\phi} - \frac{1}{2} M_{ij} \bar{\nu}_{Ri} \nu_{Rj}^c + \text{h.c.}$$

The Higgs doublet interacts with heavy degrees of freedom

Supersymmetric (type I) see-saw model

Consider the scenario with least number of new sources of LFV:

• R-parity conserved:

$$W_{\rm lep} = e_{Ri}^{c} \mathbf{Y}_{eij} L_{j} H_{d} + \nu_{Ri}^{c} \mathbf{Y}_{\nu i j} L_{j} H_{u} - \frac{1}{2} \nu_{Ri}^{c} \mathbf{M}_{i j} \nu_{Rj}^{c}$$
$$W_{\rm lep}^{\rm eff} = e_{Ri}^{c} \mathbf{Y}_{eij} L_{j} H_{d} + \frac{1}{2} \left(\mathbf{Y}_{\nu}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\nu} \right)_{i j} (L_{i} H_{u}) (L_{j} H_{u})$$

• Flavour blind mediation mechanism: no LFV in the soft terms at the cut-off scale.

If the particles responsible for neutrino masses are lighter than the mediation scale, quantum corrections will necessarily generate flavour violating terms in the slepton sector: Borzumati, Masiero

$$\begin{array}{cccc} & \begin{array}{c} & & \left(\delta \mathbf{m}_{L}^{2} \right)_{ij} & \simeq & -\frac{1}{8\pi^{2}} (3m_{0}^{2} + |A_{0}|^{2}) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log \left(\frac{\Lambda}{M_{\mathrm{maj}}} \right) \\ & \left(\delta \mathbf{m}_{e}^{2} \right)_{ij} & \simeq & 0 \end{array}, \\ & \left(\delta \mathbf{A}_{e} \right)_{ij} & \simeq & \frac{-3}{8\pi^{2}} A_{0} \mathbf{Y}_{e} (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log \left(\frac{\Lambda}{M_{\mathrm{maj}}} \right) \end{array}, \end{array}$$

Supersymmetric (type I) see-saw model

Consider the scenario with least number of new sources of LFV:

• R-parity conserved:

$$W_{\text{lep}} = e_{Ri}^{c} \mathbf{Y}_{eij} L_{j} H_{d} + \nu_{Ri}^{c} \mathbf{Y}_{\nu i j} L_{j} H_{u} - \frac{1}{2} \nu_{Ri}^{c} \mathbf{M}_{i j} \nu_{Rj}^{c}$$
$$W_{\text{lep}}^{\text{eff}} = e_{Ri}^{c} \mathbf{Y}_{eij} L_{j} H_{d} + \frac{1}{2} \left(\mathbf{Y}_{\nu}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\nu} \right)_{i j} (L_{i} H_{u}) (L_{j} H_{u})$$

• Flavour blind mediation mechanism: no LFV in the soft terms at the cut-off scale.

If the particles responsible for neutrino masses are lighter than the mediation scale, quantum corrections will necessarily generate flavour violating terms in the slepton sector: Borzumati, Masiero

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \ \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta$?

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta?$

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta?$

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \ \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta?$

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \operatorname{tan}^2 \beta \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\mathrm{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta$?

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta$?

Back of the envelope calculation of BR $(l_i \rightarrow l_i \gamma)$:

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \ \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log \left(\frac{\Lambda}{M_{\text{maj}}} \right) \end{aligned}$$

Cut-off scale?

Flavour structure of the soft terms at the cut-off scale? soft-SUSY parameters?

 $\tan\beta$?

The see-saw Lagrangian has 12+6 new parameters. Neutrino observations at most can fix 6+3 parameters. Still, there are 6+3 free parameters. There are, compatible with the observed neutrino parameters, an infinite set of Yukawa couplings! Casas, AI

Changing R and the right-handed neutrino masses, any $Y^{\dagger}Y$ can be obtained.

In fact, there is a one-to-one correspondence between $\{\mathbf{Y}_{\nu}, M\} \leftrightarrow \{\mathcal{M}, \mathbf{Y}_{\nu}^{\dagger}\mathbf{Y}_{\nu}\}$ Davidson, Al

High-energy parameters of the see-saw Lagrangian \longleftrightarrow Low energy observables: neutrino mass matrix, BR $(l_i \rightarrow l_i \gamma)$, EDMs

From a *model independent* perspective, the type-I see-saw can accommodate anything at low energies!! **No predictions**

Is this a dead-end? Is it impossible to test the SUSY see-saw?

Remarkably, under some well motivated assumptions, it is possible to derive predictions for the LFV processes, in the form of lower bounds.

Procedure:

- Consider the worst case scenario to detect LFV⇔Lower bounds
- Assume absence of tunings.
- Assume hierarchical neutrino Yukawa couplings.
- Make the calculations carefully!

The worst case scenario for the detection of LFV in the SUSY see-saw is:

R-parity conserved

 (m²_{lij}, (m²_e)_{ij}, A_{eij}, i≠j vanish at high energies (no LFV in the soft terms at the cut-off scale)
(Y⁺_vY_v) diagonal

(compatible with neutrino masses)

The back of the envelope calculation gives BR $(l_i \rightarrow l_j \gamma)=0$

$$\begin{aligned} &\operatorname{BR}(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta \operatorname{BR}(\ell_j \to \ell_i \nu_j \bar{\nu}_i) \\ &(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right) \end{aligned}$$

The worst case scenario for the detection of LFV in the SUSY see-saw is:

R-parity conserved

 (m²_L)_{ij}, (m²_e)_{ij}, A_{eij}, i≠j vanish at high energies (no LFV in the soft terms at the cut-off scale)
(Y[†]_vY) diagonal

(compatible with neutrino masses)

The back of the envelope calculation gives BR $(l_i \rightarrow l_i \gamma)=0$

$$BR(\ell_j \to \ell_i \gamma) \simeq \frac{\alpha^3}{G_F^2} \frac{|(\mathbf{m}_L^2)_{ij}|^2}{m_S^8} \tan^2 \beta BR(\ell_j \to \ell_i \nu_j \bar{\nu}_i)$$
$$(\mathbf{m}_L^2)_{ij} \simeq \mathbf{m}_L^2(\Lambda)_{ij} - \frac{1}{8\pi^2} (3m_0^2 + |A_0|^2) (\mathbf{Y}_{\nu}^{\dagger} \mathbf{Y}_{\nu})_{ij} \log\left(\frac{\Lambda}{M_{\text{maj}}}\right)$$

However, this calculation implicitely assumes that all the right-handed neutrinos decouple at the same scale M_{maj}

Strictly speaking $(\mathbf{Y}_{\nu}^{\dagger}\mathbf{Y}_{\nu})_{ij}\log\left(\frac{\Lambda}{M_{maj}}\right) \longrightarrow \sum_{k} \mathbf{Y}_{\nu ki}^{*}\log\left(\frac{\Lambda}{M_{k}}\right) \mathbf{Y}_{\nu kj}$ which is necessarily different from zero (unless cancellations take place) Assume:

- No cancellations
- Hierarchical neutrino Yukawa eigenvalues: $y_1 \ll y_2 \ll y_3$ (as in the rest of known Yukawa matrices)
- Cut-off scale at very high energies.

$$\mathrm{BR}(\mu \to e\gamma) \gtrsim 1.2 \times 10^{-11} \left(\frac{y_1}{4 \times 10^{-2}}\right)^4 \left(\frac{m_S}{200 \,\mathrm{GeV}}\right)^{-4} \left(\frac{\tan\beta}{10}\right)^2 \,,$$

Where the smallest Yukawa coupling is related to the lightest right-handed neutrino mass through: $M_1 \lesssim \frac{y_1^2 \langle H_u^0 \rangle^2}{\sqrt{\Delta m_{sol}^2}}$

$$\mathrm{BR}(\mu \to e\gamma) \gtrsim 1.2 \times 10^{-11} \left(\frac{M_1}{5 \times 10^{12} \mathrm{GeV}}\right)^2 \left(\frac{m_S}{200 \,\mathrm{GeV}}\right)^{-4} \left(\frac{\tan\beta}{10}\right)^2$$

AI, Simonetto

Experiments on rare decays provide upper bounds on see-saw parameters:

Relevant for baryogenesis through leptogenesis: $M_1 \gtrsim 10^9$ GeV

Baryogenesis through leptogenesis

After the discovery of neutrino oscillations, leptogenesis stands as a very attractive explanation for the observed matter-antimatter asymmetry.

The simplest leptogenesis scenario consists in the out of equilibrium decay of the lightest right-handed neutrino. Then, the three Sakharov conditions are automatically fulfilled.

- Violation of B-L. Guaranteed if neutrinos are Majorana particles.
- C and CP violation. Guaranteed if the neutrino Yukawa couplings contain physical phases.

• Departure from thermal equilibrium. Guaranteed, due to the expansion of the Universe.

The generation of a baryon asymmetry is guaranteed in the leptogenesis mechanism. But, can leptogenesis generate the *observed* baryon asymmetry? Roughly speaking, the generation of a BAU through leptogenesis proceeds in three steps:

1- Generation of a lepton asymmetry in the decay of the lightest right-handed neutrino.

3- Conversion of the lepton asymmetry into a baryon asymmetry.

 $\eta_B\approx\eta_L/2$

Leptogenesis parameter space

Probing SUSY leptogenesis with LFV

Assumptions:

- No cancellations
- hierarchical neutrino Yukawa eigenvalues: $y_1 \ll y_2 \ll y_3$

(Leptogenesis requires $\Lambda > 10^{16}$ GeV, so no need to assume a large cut-off)

Probing SUSY leptogenesis with LFV

Assumptions:

- No cancellations
- hierarchical neutrino Yukawa eigenvalues: $y_1 \ll y_2 \ll y_3$

(Leptogenesis requires $\Lambda > 10^{16}$ GeV, so no need to assume a large cut-off)

μ -e conversion at 10⁻¹⁸??

Note that in deriving this result we have assumed the worst case scenario for the detection of μ – e flavour violation:

- R-parity conserved.
- Universal soft terms at the cut-off scale.
- Yukawa textures that minimize the flavour violation: $(Y_{\nu}^{\dagger}Y_{\nu})$ diagonal.
- Also, it is unlikely that M₁ saturates the lower bound (this requires optimal CP phases).

→ in general, much larger rates expected

Conclusions

Why μ to e conversion at <10⁻¹⁸?

• Many models of new physics can be probed, even at energy scales much larger than the ones reachable by the Tevatron/LHC.

• A positive signal is in general expected if (SUSY) leptogenesis the correct mechanism to explain the observed matter-antimatter asymmetry.

Conclusions

Why μ to e conversion at <10⁻¹⁸?

• Many models of new physics can be probed, even at energy scales much larger than the ones reachable by the Tevatron/LHC.

• A positive signal is in general expected if (SUSY) leptogenesis the correct mechanism to explain the observed matter-antimatter asymmetry.

Thank you for your attention