201 MHz Cavity Plans

Derun Li Center for Beam Physics Lawrence Berkeley National Laboratory February 11, 2011 MAP Friday Video Conference Meeting

Summary of 201 MHz Cavity Activities

- RF loop coupler damage (observation)
 - Sparking at loop region due to a narrow gap between the loop and cavity body
 - Ceramic window damage: copper sputtered on the window with patterns
- Understand/study and repair the damaged coupler
 - A small section of the coaxial part of the coupler has been cut for measurement and analysis by J. Norem at ANL
 - The loop will be modified to increase the spacing between the loop and cavity body, including all couplers for MICE cavities
- Field enhancement and RF heating power of the curved-in beryllium window
 - Verify simulation results

201 MHz Cavity for MICE

- MICE cavity fabrication progressing well
 - MICE RF cavities *in advance of scheduled date* (MICE CM28); we have ten cavities with brazed water cooling pipes (two spares) at LBNL (Dec. 2010)
 - First five cavities measured with low RF power (frequency and Q)
 - Received nine beryllium windows (with TiN coatings)
 - Ten ceramic RF windows ordered; two could be used for MTA
 - Tuner design complete, one tuner prototype tested offline
 - Six prototype tuners in fabrication, and to be tested this year
 - Design of RF power (loop) coupler complete, ready for fabrication
 - Design of cavity support and vacuum vessel complete
 - Cavity post-processing (surface cleaning and preparation for EP) to start this year at LBNL

Cavity Inspection

Damage on Ceramic Window

Sparking Marks of RF Coupler

Coupler Repair

- Borrow two MICE ceramic windows for high power tests (ten of them have been ordered)
- Refurbish the couplers
 - Modify the loop design to increase spacing of the gap between the coupler and cavity body
 - TiN coating on the loop region
 - Clean surface exposed to RF
- Retune RF coupling
- Add more diagnostics
 - Arc detectors
 - Temperature sensors

Measurement Plan Using MICE Cavities

- Measurement of engineering and mechanical designs
 - Prototypes: MuCool prototype cavity, tuners, tuning mechanism, support structure
 - Vacuum, water cooling and integration
- RF measurement
 - RF parameters: frequency, Q, coupling (couplers)
 - Low power RF measurements of tuning range, sensitivity, mechanism and control circuit
 - W/O and with beryllium windows
- Single cavity vessel

Design of Single Cavity Vessel

- Keep as much as possible of the same dimensions and features of RFCC
- One vessel to accommodate two types of MICE cavities (left and right)
- o Future LN operation

Design of Single Cavity Vessel

- The single cavity vessel design is complete (LBNL)
- Drawings will be generated for review soon
- Design review soon:
 - o Biding and identification of vendors
 - Fabrication of vessel and accessory components
- Six prototype tuners in fabrication at Mississippi University

What Can We Learn?

Prior to having MICE RFCC module, the single cavity vessel allows us to:

- Check engineering and mechanical design
- Obtain hands-on experience on assembly and develop assembly procedures and fixture
 - Cavity installation
 - Beryllium windows
 - RF couplers and connections
 - Water cooling pipe connections
 - Vacuum port and connections
 - Tuners and circuit
 - Cavity support structures
 - Vacuum vessel support and handling

What Do We Plan to Measure?

Low power RF measurements:

- Cavity frequency in air and vacuum
- Tuning sensitivity in air or vacuum
- **High power RF measurements:**
 - Cavity conditioning
 - Frequency variation due to RF heating on beryllium windows and cavity body (can be done using the MTA prototype cavity)
 - Frequency shift as a function of average RF power and time
 - Repeat above measurement with active tuners on the cavity and measure tuning range and sensitivity (tuner control circuits, etc.)
- Measurements with magnetic fields?

Summary

- Damage of RF couplers and ceramic windows observed, more RF tests will be resumed with new ceramic windows and repaired and modified couplers
- RF cavity measurement plan (using MICE cavity) developed
- Many MICE related issues can be explored and learned from the measurements of single cavity vessel
- In addition, we will continue
 - RF measurements of the second batch of the five MICE cavities
 - Cavity surface finish and EP
 - Corse tuning (by deforming the cavity body) of all MICE cavities to a center frequency
 - Fabrication of accessory components
- Coupling coil magnet for MuCool

