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Abstract

The muon ionization cooling channel based on lithium rods (Li-rod) has
been under consideration since the 1990s (1). Features of muon beam mo-
tion are discussed, namely the influence of non-paraxiality of motion and
transverse-longitudinal coupling. The inclusion of an emittance exchanger to
the cooling channel can result in the cooling of all degrees of freedom. The
appropriate beam parameters for emittance exchange procedure and their
dependence on transverse emittance and beam longitudinal parameters are
discussed. Most simulations of muon beam cooling were performed using
the specially developed software LyRICS (Lithium Rod Ionization Cooling
Simulation); a comparison between its results and the predictions of a linear
model serves both to examine the simulation code and to determine the con-
tribution of non-paraxiality to the beam motion. An additional comparison
with a simulation based on G4beamline code is also presented. More com-
plete consideration of longitudinal cooling and emittance exchange procedure
will be presented in future work. For numerical examples, we used muons
around 200 MeV total energy since such energy is close to optimal.
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1. Introduction

One of the most (or, maybe, just the most) important steps that enabled
progress in Elementary Particle Physics was the development and practical
implementation of colliding beams over 50 years ago, that led to the construc-
tion of particle colliders. Higher energy and higher productivity (luminosity)
of colliders to further increase the sensitivity and precision of collider exper-
iments are important for any further progress in HEP.

The Large Hadron Collider (4), which has recently started its operation
near Geneva, Switzerland, is currently the energy frontier facility. It is de-
signed, constructed and operated by a team of physicists from leading high
energy physics laboratories all over the world. The LHC will provide high
luminosity proton-proton collisions with a maximum center-of-mass energy
of up to 14 TeV .

A proton-proton collision at very high energy is equivalent to a collision
of its fundamental constituents with an effective energy of about 1/6 of the
initial proton energy, though with a very wide energy spectrum. As a result
of this complex collision, analysis of experimental data and extraction of
properties of fundamental interactions become difficult and the result is not
always unambiguous.

Therefore, it is of critical importance to have a possibility for an inde-
pendent study of high energy processes in collisions with a well-determined
initial state. At moderately high energies (up to about 1 TeV center-of-mass
energy) linear electron-positron colliders could solve the problem acceptably
well. However, in order to reach sufficiently high luminosity, bunches of par-
ticles of both high intensity and high density are required. Such high-density
e− (e+) bunches produce very high focusing radial electric and azimuthal
magnetic fields, so primary particles emit too many photons. The effect can
be substantially reduced with the use of wide but very thin bunches of the
same transverse cross section. However, even in this case at center-of-mass
energies of 1 TeV the effective energy spread reaches several tens of percent.
The use of electron-electron collisions instead leads to the strong repulsion,
which results in orders of magnitude lower luminosity.

The source of this problem is in smallness of the electron mass, as the
emitting power in a collision is proportional to E2/m4. The effect can be
practically suppressed if heavier leptons are used. The only heavier lepton
with acceptably long lifetime is a muon whose mass is a factor of 200 higher
than that of an electron. The muon lifetime is 2.2 µs in its rest frame and
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rises proportionally to its total energy in the laboratory frame. As a result,
one can expect up to 1000 bunch collisions in a high-field cyclic collider prior
to the muon decay. Thus in a collider of a given perimeter and guiding mag-
netic field, use of muons instead of protons allows one to study fundamental
interactions at six times higher energy and under much cleaner conditions
(initial particles are well determined and effective monochromaticity of col-
lisions is much, much better). Muon colliders are believed to be the main
hope (the only one?) for a precision study of fundamental interactions at a
several TeV center-of-mass energy scale.

However, there are several key technologies required for the successful
construction of a muon collider which are still not fully developed. First of
all, it is necessary to cool down the muon beams to reduce the 6-dimensional
emittances by 5–6 orders of magnitude while preserving the intensity as care-
fully as possible. Such a progress in muon cooling is a must to reach sufficient
luminosity.

The most promising way for muon beam cooling is to use ionization en-
ergy losses in some dense matter with a consequent compensation of lost
energy (and longitudinal momentum) via the RF field (2; 3). Much effort
is being invested in many research laboratories worldwide to develop and
study various cooling schemes both analytically and using computer simula-
tion (5; 6; 7; 8; 9; 10; 11). Recently, preparation started for an experimental
study of some cooling techniques (12; 13; 14).

This article covers more carefully the study of a cooling channel based
on Li-rods which provide muon energy losses due to ionization and simulta-
neously strong transverse focusing by carrying a very high current. While
its technical realization is still in development, Li-rod usage may be a way
to make the strongest focusing which is essential for the final cooling stage.
Predominantly, this article focuses on a muon motion analysis in a single
Li-rod, which is a core of this cooling scheme, and not on a whole beam-
line. Different features of transverse and longitudinal muon beam motion
through rods are presented in Sections 4 and 5 respectively (such as non-
paraxiality and transverse-longitudinal coupling). Also, optimal parameters
for the emittance exchange procedure (which can upgrade the cooling to all
degrees of freedom) are determined in the Sections 5.1. At the end of this
paper one can find two appendixes where the linear models for transverse
and longitudinal motion are investigated in detail. The comparison between
different simulations and linear model predictions are presented.
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Beamline elements:

Lithium rod Lithium lens Plasma lens

RF section RF for ’’head-tail’’ rotation Hunder considerationL

Special section for phase-space redistribution Hunder considerationL

Figure 1: Beamline for final cooling stage.

2. Cooling scheme under consideration

The proposed cooling channel, which is based on Li-rods alternating with
RF cavities, is presented in Fig. 1. The matching between main elements is
realized by the cascade of lithium and plasma lenses (7): the short lithium
lenses (strong in comparison with plasma ones) make the beta-function a
few times larger at the exit of lithium rods (smaller at the entrance) and
weaken the low-aberration functioning of plasma lenses, which have longer
focal lengths. An example of beta-function behavior along with parameters
for one period of this cooling scheme are presented in Fig. 2 and Table 1
respectively. Abbreviations used in Table 1 are:

1. Li-r. — lithium rod

2. D.S. — drift space

3. Li l. — lithium lens

4. Pl l. — plasma lens

5. RF — RF cavity

6. E — energy at the exit of element [MeV ]

7. β — beta-function at the exit of element [cm]

8. H — magnetic field on the surface of element [104 ×Gauss]

9. I — current through the element [105 × A]

10. L — length of element [cm]

11. D — diameter of element [cm]
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Figure 2: Example of the beta-function behavior in one period of the cooling channel.

Li-r. D.S. Li l. D.S. Pl. l. RF Pl. l. D.S. Li l. D.S. Li-r.
E 190 190 190 190 190 220 220 220 220 220 190
β 1.11 2.52 5 75.28 165 158 63.19 5 1.39 1.1 1
H 20 — 14.7 — 0.31 — 0.79 — 13.9 — 20
I 5 — 7.81 — 0.5 — 2.6 — 8.18 — 4
L 30 1.25 1.63 18.7 23.37 150 24.6 17.05 2.84 0.56 30
D 1 — 2.14 — 6.3 — 13.32 — 2.34 — 0.8

Table 1: Example of element parameters for one period of the cooling channel.

5



The scheme specified above can provide only 4-D cooling for transverse
degrees of freedom while the longitudinal degree of freedom undergoes heat-
ing. For a 6-D cooling realization it is possible to use a special section, such
as an emittance exchanger, after several periods (lithium rod and RF cavity
pairs). Such a section should redistribute phase-space from the longitudi-
nal degree of freedom to transverse ones, which helps to further the cooling
process (this part of the cooling scheme will be studied in the upcoming
article).

As will be shown in Section 5.2, the non-paraxiality of motion results in
a higher rate of heating of the longitudinal degree of freedom in comparison
with predictions of a paraxial model (up to 2 times). An additional RF
cavity, which rotates a beam in the (cdt, dE/Eeq) plane by an angle of pi,
can be placed after a main one to suppress this undesirable effect.

3. Beam motion simulation

The multi-purpose software “Lithium Rod Ionization Cooling Simula-
tion” (LyRICS) has been developed for a study of a scheme of final cooling
for muon beams (based on consequent lithium rods). It can simulate the
6-dimensional motion of a muon beam through matter including such effects
as non-paraxiality, dissipation and stochastic processes like scattering or fluc-
tuations of energy losses. Also LyRICS allows one to simulate the motion
in matching sections based on lithium and plasma lenses, including accelera-
tion in RF cavities (taking into account transverse focusing due to transverse
components of RF-fields) and estimate its technical parameters.

4. Transverse motion

In the paraxial case, the evolution of the second moments of the beam
< x2 >, < x′2 >, < xx′ > and the transverse emittance εtr is sufficiently
simple and can be described analytically (see Appendix A). Examples of
their behavior are presented in Fig. 3. Each of these quantities is asymptotic
to a certain constant value with respect to the longitudinal coordinate s (see
Appendix A eq. (9)) and tend to the limit from above (below) if its initial
value is bigger (smaller) than equilibrium one. In the most general case, when
the initial values of the second moments are unmatched with the optical
functions of the cooling channel, they are damped with oscillations (grey
dashed lines on the graph). Despite the fact that in both cases the cooling
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Figure 3: Behavior of the second moments of the beam and transverse emittance due
to ionization cooling in the cases of matched initial conditions (black curves and values
marked by “M” label) and unmatched ones (gray curves and values marked by “UnM”
label).
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Figure 4: Linear model of transverse motion compared to simulation in the cases of a)
large initial transverse emittance and b) small one.

rate is the same, there is no doubt that these oscillations are undesirable
because they can lead to additional particle losses on the physical aperture
and should be avoided (see Appendix A eq. (12)).

4.1. Comparison of linear model and simulation

A comparison between the simulation results and the predictions of a
paraxial linear model is presented below, with specific examples shown in
Fig. 4 for two different values of the initial transverse emittance. The simu-
lation was made for ten consecutive lithium rods similar to that considered
in Section 2 (each has a length of 30 cm and a 2× 105 Gauss limitation for
a field on its surface). Particle motion in the matching and acceleration sec-
tions were simulated as ideal thin transformations such that the full energy
of a beam at the entrance to each rod is equal to 220 MeV and the second
moments are matched with the channel optics. The beam energy used in
the linear model is about 205 MeV , corresponding to the simulated beam
energy. It turns out that this relatively simple analytical model agrees with
simulation to high precision, with a discrepancy of less than 5%.

To determine in detail how longitudinal motion affects the cooling of
transverse degrees of freedom, beam passage through a single rod was exam-
ined for multiple values of initial longitudinal emittance1 with a fixed initial
transverse emittance. It has been found that only in cases of relatively small
transverse emittance close to the equilibrium value or substantial initial en-
ergy spread (more than 10%) is there a small decrease in the rate of cooling

1Or more exactly, the initial position of the beam in the (c∆t, ∆E/Eeq) plane.
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compared (around 5%) to the linear model. This confirms that the influence
of longitudinal motion on the cooling of the transverse degrees of freedom
is indeed small. As expected, the dependence of transverse cooling on the
beam parameter c∆t was not found.

5. Longitudinal motion

Similar to transverse motion, the longitudinal motion of the beam in
matter can be described analytically by a linear approach (see Appendix B).
The heating of longitudinal moments occurs by two processes: antidamping
under the action of ionization friction and “diffusion” — a fluctuation of
ionization losses.

In this model the behavior of the root-mean-square energy spread (eq. (26))
can be described using a certain characteristic value

(∆E/Eeq)
2
ch = −Θ2

dE/E/4λt. (1)

If the initial energy spread in a beam is larger than this value, an exponential
growth of the root-mean-square energy spread by antidamping is observed.
Vice versa, for the case when 〈(∆E/Eeq)

2〉0 < (∆E/Eeq)
2
ch, this longitudinal

second moment has an extremely fast growth described by diffusion initially
(the smaller the initial value of the energy spread, the faster the growth),
which becomes exponential. Note that, the value of the longitudinal density
increment λt is assumed to be negative, while the value of the transverse
decrement λs is positive. The similar quantity Θ2

x/4λs, for the case of the
transverse motion, refers to the equilibrium angular spread determined by
the competition of damping and diffusion processes. Numerical examples of
the evolution of the root-mean-square energy spread is presented in Fig. 5
(top left plot), where the average full energy is chosen as 205 MeV .

The behavior of the root-mean-square spread of the arrival time can be an-
alyzed in a similar manner — one can determine another characteristic value
(c∆t)ch, which corresponds to a “boundary” between behaviors dominated by
the two considered processes. In contrast to (∆E/Eeq)ch, however, it will be

a function of all initial data
(〈(c∆t)2〉0, 〈(∆E/Eeq)

2〉0, 〈(c∆t) (∆E/Eeq)〉0
)
.

The spread of the arrival time has asymptotics which depend on 〈(∆E/Eeq)
2〉0

only, regardless of the initial value 〈(c∆t)2〉0:
〈
(c∆t)2〉∣∣

t→∞ =
c2

γ2
eq

(〈(
∆E

Eeq

)2
〉

0

− Θ2
E

4λt

)
e−4λtt

4λ2
t

. (2)
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2〉 as well as the longitudinal emittance εlong for different initial values.
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Figure 6: Growth of beam longitudinal parameters after single rod passage under different
initial conditions in comparison with a linear model (denoted by “linear m.”).

Several examples of the behavior of 〈(c∆t)2〉 are shown in Fig. 5 (top right) for
different values of 〈(c∆t)2〉0 and 〈(∆E/Eeq)

2〉0 (the value of 〈(c∆t) (∆E/Eeq)〉0
is equal to zero for simplicity for all cases). The evolution of the longitudinal
emittance εlong is given at the bottom of this figure for all considered sets of
initial beam second moments.

5.1. Comparison of linear model and simulation

The same analysis of beam passage through one rod with variation of the
initial conditions (such as the initial beam position in the (c∆t, ∆E/Eeq) plane
and εtr initial), which has been used in Section 4.1, is also useful for describ-
ing the dependence of longitudinal emittance heating on transverse beam
parameters.

The growth of 〈(∆E/Eeq)
2〉 (the ratio of the final root-mean-square en-

ergy spread upon the exit of a lithium rod to that at the entrance) is shown
in Fig. 6 a.). As expected, it is independent of the transverse beam parame-
ters, even for large values (though undoubtedly these parameters are limited
from above to values reasonable for this cooling scheme).

In contrast, the growth of 〈(c∆t)2〉 conforms to the linear model predic-
tion with confidence only in the case of small transverse emittance (lines
with circle symbols in Fig. 6 b.)); the increment of the spread in the ar-
rival time upon the exit of the rod grows with the transverse emittance (at
fixed initial parameters, namely, 〈(c∆t)2〉0 and 〈(∆E/Eeq)

2〉0). This effect is
demonstrated for two cases with different initial energy spreads (solid and
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dashed lines which refer to large and small values of 〈(∆E/Eeq)
2〉0, respec-

tively). This too is a result of non-paraxiality of motion — the presence of
particles with big angles entails a significant increase in the paths they take,
relative the equilibrium one.

As mentioned above, for the 6-D type of cooling channel, the final value
of full emittance is determined by the equilibrium value of the transverse
emittance (eq. 14) and how much phase-space volume is redistributed from
the longitudinal to transverse degrees of freedom during cooling. Therefore,
the wish to redistribute as much as possible is natural, but there is a cer-
tain limitation: if the longitudinal second moment values are too small then
diffusion begins dominating and longitudinal heating goes faster, which can
even lead to full 6-D emittance heating. In Fig. 7, two sketches of cooling
with redistribution demonstrate how an excessive redistribution (right col-
umn of figures) can slow down 6-D cooling. Therefore, a proper value for the
longitudinal emittance after redistribution, or rather a beam position on the
(c∆t, ∆E/Eeq) plane, and the dependence of that value on the transverse
motion should also be determined.

By scanning the (c∆t, ∆E/Eeq) plane of initial beam parameters, one can
determine the region of parameters optimal for cooling as a function of the
transverse phase-space (for a certain length of rod). An example of such a
scan is presented in Fig. 8 for the 30-cm rod with a 2× 105 Gauss limitation
for the field on its surface. The “0” emittance case in Fig. 8 b. refers to a
simulation where transverse motion was completely removed and, therefore,
the obtained region is very close to that predicted by the linear model. One
can therefore conclude that while transverse motion is independent of longi-
tudinal parameters, longitudinal motion is strongly influenced by transverse
beam parameters.

5.2. “Head-tail” rotation

Upon studying the cooling process as a whole, simulations show that the
longitudinal emittance grows faster than the linear model predicts (up to two
times).

A study of the distribution of particle arrival times during the cooling
process reveals its deformation after passing through a few rods (a numerical
example is presented in Fig. 9 bottom). There are three main differences
between the initial and final distributions. First of all, the packet spreads
faster than predicted by the linear model. Also, a long tail forms asymmet-
rically as a result of lagging particles. The third difference, which is a direct
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Figure 8: a. Growth of the longitudinal emittance (εlongfin
/εlongini

) as a function of
the initial root-mean-square energy and arrival time spreads after passage through one
lithium rod for a fixed value of initial εtr. b. The region in which the antidamping
process dominates over the fluctuation of ionization losses (in other words, the region where
the growth of the longitudinal emittance is below a preassigned value defined from the
asymptotics) for different values of the initial transverse emittance after passage through
one lithium rod.
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Figure 9: The evolution of the distribution of the arrival time spread after passing through
5 rods in cases of (top) “head-tail” rotation usage and (bottom) without it; ¥ — initial
distribution, ¤ — distribution after passing 5 rods.
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result of the emergence of a long tail, is that the “center-of-gravity” of the
distribution shifts from the peak position. All this means that non-paraxial
particles lose more energy than those at the center, causing them to drop
behind the main part of the beam. This emphasizes again the importance
of taking transverse parameters into account during a study of longitudinal
motion.

A similar analysis of the energy spread (Fig. 10 bottom) also shows par-
ticles with bigger losses, but the amount of distribution deformation is not
as significant in this case.

It appears that a procedure of beam symmetrization (“head-tail” rota-
tion (11)), consisting of beam rotation in longitudinal phase-space by an
angle of π, can completely solve this problem; it allows one to obtain the
same rate of longitudinal emittance growth in simulation as the linear model
predicts without additional increase due to non-paraxiality effects. Similar
simulations of the evolution of cdt and dE/E distributions but with with
“head-tail” rotation usage are shown in the Fig. 9 (top) and 10 (top) respec-
tively. Even just visually, the final distributions are much more symmetric
and narrow. The beam symmetrization was simulated as a thin ideal process
after the second and forth rods. Practically, it can be realized by an addi-
tional RF section with a zero acceleration gradient placed in each period of
the cooling system (or performing an additional RF-gymnastic in sections of
energy recovery). The influence of this procedure on a muon’s lifetime and
its technical parameters will be estimated in future work.

6. Summary

The motion of a muon beam in the final cooling scheme based on lithium
rods has been simulated using LyRICS software. The analytical linearized
model of muon beam motion, which helps to check the code of the devel-
oped software, was used to determine the influence of non-paraxiality and
the interdependence of transverse and longitudinal motion. Preliminary es-
timations of the optimal longitudinal beam parameters for the emittance
exchange procedure, which will possibly help to organize the cooling of all
degrees of freedom, are presented in Section 5.1.

The main conclusions are:

1. The selected linear model is able to describe the transverse motion
with high precision independent of beam longitudinal parameters (in
the range reasonable for all parameters in this type of cooling).
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2. The evolution of the relative energy deviation also converges with the
linear model for a wide range of transverse emittances and is indepen-
dent of the deviation in the arrival time. In contrast, the spread of
the arrival time agrees with the linear model only in the case of small
transverse emittance, which is a direct consequence of non-paraxiality
(particles with large angular deviations follow a longer path in mat-
ter than the equilibrium one, which results in the ”tail” formation in
the direction of delayed particles). Also, the dependence of the root-
mean-square arrival time on the transverse emittance makes the opti-
mal beam longitudinal sizes (corresponding to a minimal increment of
longitudinal heating) depend on it too.

3. The additional increase of the longitudinal emittance in comparison
with the linear model prediction (which was detected in (11)) have been
described in more detail. The statistical approach gives cogent evidence
of the efficiency of the “head-tail” rotation procedure for suppression
of non-paraxiality related effects.
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A. Linearized model of transverse motion

The transverse motion can be approximately described by a paraxial lin-
ear model with a fixed mean energy of a beam2. For a case of paraxial
motion, it is simple to replace time derivatives to those over the longitudinal
path in the equation of motion. Using notations in which operators d

dt
and

d
ds

are denoted as ˙ and ′, respectively, and neglecting a variation of the total
mean velocity (which is applicable in this approach):

dpx

dt
= γµmµ

d

dt




dx

ds

ds

dt︸︷︷︸
=vµ


 =

= γµmµ


vµ

d

dt

(
dx

ds

)
+ x′

d

dt
vµ

︸︷︷︸
=0


 =

= γµmµvµ
dx′

ds

ds

dt
= γµβ

2
µmµc

2x′′.

The frictional force3

Ffrx ≈ Ffrx
′ = −(dE/dl)x′

and focusing force
Ffoc = −eβµGx,

where G is a field gradient, substituted into the equation of motion

dp

dt
=

∑
i

Fi, (4)

2In reality it conforms to short enough sections with matter which alternate with sec-
tions of energy recovery.

3The dE/dl value of average friction forces due to ionization losses is characterized by
the Bethe-Bloch equation (16):

−dE

dl
(βµ) =

4πnee
4

meβ2
µc2

[
ln

cβµγµ

√
2meTmax

Ī
− β2

µ

]
, (3)

where Tmax is a maximal possible kinetic energy transferred to an electron in a single
collision, I is a mean excitation energy and ne is an electron density of matter.
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without taking into account scattering, immediately result in a standard
equation for damped oscillations for one of the transverse degrees of freedom:

x′′ + 2λsx
′ + k2

sx = 0, (5)

where λs and ks are determined by:

λs =
1

2γµβ2
µmµc2

dE

dl
, (6)

ks =

√
eG

γµβµmµc2
. (7)

Averaging over the ensemble makes it possible to rewrite the expression
(5) as a system of linear differential equations in terms of beam second mo-
ments: 




〈x2〉′ = 2〈xx′〉
〈xx′〉′ = 〈x′x′〉+ 〈xx′′〉 =

= 〈x′2〉 − k2
s〈x2〉 − 2λs〈xx′〉

〈x′2〉′ = 2〈x′x′′〉 =

= −2k2
s〈xx′〉 − 4λs〈x′2〉

.

Converting it to a matrix form and adding the column corresponding to the
scattering process omitted in (5), we have:



〈x2〉
〈xx′〉
〈x′2〉



′

=




0 2 0
−k2

s −2λs 1
0 −2k2

s −4λs


 ·



〈x2〉
〈xx′〉
〈x′2〉


 +




0
0

Θ2
x


 .

Two zeroes in an additional column describe a zero value of the average
scattering angle and a fact that the scattering process does not produce im-
mediate influence on a transverse coordinate. The value of Θx has a meaning
of a root-mean-square scattering angle per unit of length passed in matter,
which in the first approximation can be described by the expression for mul-
tiple Coulomb scattering (15):

Θ2
x =

4πnez
2(Z + 1)e4

γ2
µβ

4
µm

2
µc

4
Lc, (8)
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where z and Z are charges of a scattered particle and scattering one, respec-
tively (in elementary electron charge) and Lc is a Coulomb logarithm.

A solution of this equation is given by a sum of the general solution

〈x2〉GS = e−2λss

[
C1

1

k2
s

+

+ C2

(
2λ2

s − k2
s

k4
s

cos 2ωs− 2λs

k2
s

ω

k2
s

sin 2ωs

)
+

+ C3

(
2λ2

s − k2
s

k4
s

sin 2ωs +
2λs

k2
s

ω

k2
s

cos 2ωs

)]
,

〈xx′〉GS = e−2λss

[
−C1

λs

k2
s

+

+ C2

(
−λs

k2
s

cos 2ωs +
ω

k2
s

sin 2ωs

)
+

+ C3

(
−λs

k2
s

sin 2ωs− ω

k2
s

cos 2ωs

)]
,

〈x′2〉GS = e−2λss

[
C1+

+ C2 cos 2ωs + C3 sin 2ωs

]
,

where ω =
√

k2
s − λ2

s, and a partial one

〈x2〉PS =
Θ2

x

4λsk2
s

, (9)

〈xx′〉PS = 0, (10)

〈x′2〉PS =
Θ2

x

4λs

. (11)

A substitution of the initial conditions
(〈x2〉0, 〈xx′〉0, 〈x′2〉0

)
into a complete

solution with s = 0 determines arbitrary constants Ci:




C1 = −2λsk4
s〈x2〉0+4λ2

sk2
s〈xx′〉0+2λsk2

s〈x′2〉0−Θ2
xk2

s

4λs(λ2
s−k2

s)

C2 =
2k4

s〈x2〉0+4λsk2
s〈xx′〉0+2(2λ2

s−k2
s)〈x′2〉0−Θ2

xλ2
s

4λs(λ2
s−k2

s)

C3 = −4k2
s〈xx′〉0+4λs〈x′2〉0−Θ2

x

4λs

√
k2

s−λ2
s

.
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From this expression, we can obtain a non-oscillatory solution for beam
second moments as well as matched initial conditions for it by making C2

and C3 equal to zero:



〈xx′〉M0 =

Θ2
x − 4λsk

2
s〈x2〉0

4k2
s

〈x′2〉M0 = k2
s〈x2〉0

, (12)





〈x2〉M =

(
〈x2〉0 − Θ2

x

4λsk2
s

)
e−2λss +

Θ2
x

4λsk2
s

〈xx′〉M = −
(

λs〈x2〉0 − Θ2
x

4k2
s

)
e−2λss

〈x′2〉M =

(
k2

sλs〈x2〉0 − Θ2
x

4λs

)
e−2λss +

Θ2
x

4λs

. (13)

It seems that asymptotics of the complete solution is a partial solution
(9) because of presence in the general solution of the exponentially damped
factor. This asymptotics also gives the equilibrium value of the transverse
emittance:

εeq
tr = lim

s→∞

√
〈x2〉PS〈x′2〉PS − 〈xx′〉PS

2 =
Θ2

x

4λsks

. (14)

B. Linearized model of longitudinal motion

Similarly to the model selected for the transverse motion, in a paraxial
case one can describe the longitudinal motion of a test particle relative to
the equilibrium one with an average beam energy. The time derivative of
momentum in case when an acting force is directed along velocity

dp

dt
= mµγ

3
µv̇,

substituted into (4), gives a differential equation of the second order (Newton
equation)4:

z̈ (t) =
1

mµγ3
µ

Ffr.

4In contrast to A, for the longitudinal motion there is no focusing force when particles
move in matter, which appears only in the section of energy recovery.
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A full friction force Ffr can be represented as a sum of average losses (3) and
stochastic force f responsible for fluctuations of average losses:

z̈ (t) =
1

mµγ3
µ

(
−dE

dl
+ f(t)

)
. (15)

Having selected an equilibrium particle which moves with average velocity of
a beam βeq, and linearizing dE/dl as κβµ + b (Fig. 11), one can obtain the
equation of motion for the equilibrium particle:

z̈eq = −2λtżeq − b

mµγ3
µ

, (16)

where
λt =

κc

2mµc2γ3
µ

.

The set of (15) and (16) gives the equation for a deviation of a test particle
from the equilibrium one:

(z̈ − z̈eq) = −2λt (ż − żeq)− f (t) . (17)

Turning it to a differential equation of the first order for a relative velocity,
one obtains:

∆v̇ = −2λt∆v − f (t) , (18)

which solution is:

∆v (t) = ∆v0e
−2λtt − e−2λtt

t∫

0

e2λtτf (τ) dτ, (19)

where ∆v0 = ∆v|t=0 is the initial condition. Averaging over a stochastic
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Figure 11: The average ionization losses and its linear approximation as a function of
muon velocity.
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force of (19) allows one to find the correlation function of velocity:

〈∆v (t1) ∆v (t2)〉f =

= ∆v0
2e−2λtt1−2λtt2 + e−2λtt1−2λtt2×

×
t2∫

0

t1∫

0

e2λtτ1+2λtτ2〈f (τ1) f (τ2)〉 dτ1dτ2 −

−∆v0e
−2λtt1

t2∫

0

e2λtτ2〈f (τ2)〉 dτ2 −

−∆v0e
−2λtt2

t1∫

0

e2λtτ1〈f (τ1)〉 dτ1.

Considering the fluctuation of energy losses as a Gaussian stochastic process
delta-correlated in time with a zero mean value (17):

{
〈f (t)〉 = 0

〈f (t1) f (t2)〉 = B (t1, t2) = Bδ (t1 − t2)
, (20)

and assuming t1 = t2, the root-mean-square velocity spread becomes5:

〈∆v2 (t)〉f =

(
∆v0

2 − B

4λt

)
e−4λtt +

B

4λt

. (21)

Making a similar proof for the value of the longitudinal deviation ∆z (t):
writing a solution in an integrated form from ∆ż = ∆v

∆z (t) = ∆z0 +

t∫

0

∆v (τ) dτ, (22)

5Comparison of (21) and (13) shows the meaning of B — this is a root-mean-square
velocity “spread” per unit time, arising because of fluctuations of energy losses:

Θ2
dE/E = 2πβµcrµne[2− β2

µ],

from which
Θv = B1/2 ' c

βµγ2
µ

ΘdE/E .
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and averaging it by a stochastic force, one can find the root-mean-square
value of ∆z (t):

〈∆z2 (t)〉f = ∆z2
0 + 2∆z0

t∫

0

〈∆v (τ)〉 dτ +

+

t∫

0

t∫

0

〈∆v (τ1) ∆v (τ2)〉 dτ1 dτ2 =

= ∆z2
0 + 2∆z0∆v0

(
e2λtt − 1

)

2λt

e−2λtt +

+

(
e2λtt − 1

)2

4λ2
t

(
∆v2

0 −
Θ2

v

4λt

)
e−4λtt +

+

(
e−λtt − eλtt

)2

4λ2
t

Θ2
v

4λt

. (23)

The calculation of the cross correlation function gives:

〈∆z (t) ∆v (t)〉f = ∆z0〈∆v(t)〉f +

+

t∫

0

〈∆v (t) ∆v (τ)〉f dτ =

= ∆z0∆v0e
−2λt +

(
e2λtt − 1

)

2λt

Θ2
v

4λt

e−2λt −

−
(
e−2λtt − 1

)

2λt

(
∆v2

0 −
Θ2

v

4λt

)
e−2λtt. (24)

Finally, averaging over the initial ensemble of particles and turning to
variables of arrival time6 and energy deviation





∆z → βeq∆z ≈ c∆t

∆v → βeqγ
2
eq

∆v

c
≈ ∆E

Eeq

,

6Here and further multiplied by the speed of light c.
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one can find an expression describing the behavior of the longitudinal emit-
tance for a beam moving in matter:

εlong =

√√√√〈
(c∆t)2〉

〈(
∆E

Eeq

)2
〉
−

〈
(c∆t)

(
∆E

Eeq

)〉2

, (25)

〈
(c∆t)2〉 =

〈
(c∆t)2〉

0
+

+ 2
c

γ2
eq

〈
(c∆t)

(
∆E

Eeq

)〉

0

e2λtt − 1

2λt

e−2λtt +

+
c2

γ4
eq

(
e−λtt − eλtt

)2

4λ2
t

Θ2
dE/E

4λt

+

+
c2

γ4
eq

(
e2λtt − 1

)2

4λ2
t

(〈(
∆E

Eeq

)2
〉

0

−
Θ2

dE/E

4λt

)
e−4λtt

〈(
∆E

Eeq

)2
〉

=
Θ2

dE/E

4λt

+

+

(〈(
∆E

Eeq

)2
〉

0

−
Θ2

dE/E

4λt

)
e−4λtt

〈
(c∆t)

(
∆E

Eeq

)〉
=

〈
(c∆t)

(
∆E

Eeq

)〉

0

e−2λtt +

+
c

γ2
eq

e2λtt − 1

2λt

Θ2
dE/E

4λt

e−2λtt −

− c

γ2
eq

e−2λtt − 1

2λt

(〈(
∆E

Eeq

)2
〉

0

−
Θ2

dE/E

4λt

)
e−2λtt , (26)

where
〈
(c∆t)2〉

0
,

〈(
∆E
Eeq

)2
〉

0

,
〈
(c∆t)

(
∆E
Eeq

)〉
0

are initial data averaged over

the initial ensemble.
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