

Outline

- Gaseous radiation detectors and history of GEM development
- Principles of GEM detector operation
- GEM detector uses
- GEM production technology & limitations
- Research directions & unanswered questions

- Consider an ionizing particle travelling through gas (e.g. Ar)
- The amount of electron-ion pairs is proportional to the energy loss of the particle

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers", CERN, Geneve 1977

- If electrical field is applied to the gas, we can collect the electrons at the anode
- But the signal is extremely small (uV)

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers", CERN, Geneve 1977

14.05.2014

- Applying a large electric field allows us to create avalanche secondary ionization in the gas
- The signal is large, but we the magnitude depends on avalanche length – no proportionality to energy loss!

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers", CERN, Geneve 1977

14.05.2014

- We need both a small-field proportional region to collect the primary-ionized electrons
- And a large field region of controlled geometry to form the amplifying secondary ionization avalanche
- Simplest case: an anode wire in a cylindrical cathode:

Since the electric field decreases as $1/x^2$ with the distance from the anode, the avalanche region will form under radius r.

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers", CERN, Geneve 1977

Multi-wire proportional chamber

To record the position of the particle, we can use several parallel wires between two cathode planes:

14.05.2014

- For a 2D localization we can use 2 wire planes at different orientations
- The development of MVPC in 1968 gave G. Charpak the Nobel prize in 1992!

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers", CERN, Geneve 1977

MWPC limitations

- MWPC for a long time was the work-horse of High Energy Physics (HEP) experiments.
- However, it has several limitations:
 - > The spatial resolution is limited by wire spacing (few mm)
 - Moreover, the wires interact through electrostatic forces (they at the same potential).
 - > Thus they will resonate when placed too closely.
 - At higher particle fluxes positive ions are not collected fast enough which leads to spatial charge build-up and gain drops.

F. Sauli, A. Sharma, Microstrip Gaseous Detectors

Micro-pattern gaseous detectors

- Remember what is needed:
 - A large low electric-field *drift* region in which primary ionization will take place and electrons will drift towards readout.
 - A small and controlled large electric-field *amplification* region in which the collected char will be avalanche-multiplied.
- Micro-pattern gaseous detectors (MPGDs) are designs which utilize modern electronic manufacturing processes to shape the electrical field.

Multi-strip detector

- In 1988 Oed et al. proposed to replace wires with thin PCB traces.
- Structure is rigid and can use fine stripes pitch.
- Positive ions are quickly collected by cathode strips.
- However sparks between neighboring anode and cathode stripes can destroy the device!

14 05 2014

F. Sauli, A. Sharma, Microstrip Gaseous Detectors

MicroMegas

- MicroMegas (Micro-MEsh Gaseous Structure) were invented in 1992 by G. Charpak and I. Giomatrias.
- They consist of a micro-strip plane above which an conducting mesh is placed:

Y. Giomataris, Ph. Rebourgeard, J.P. Robert, G. Charpak, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particleflux environments, img. courtesy of Wikipedia

Gas Electron Multiplier (GEM)

- The GEM was introduced in 1997 by F. Sauli at CERN
- It is a thin (50um) parallel-plates capacitor with holes.
- Thus it creates locally high electric field!

F. Sauli, GEM: A new concept for electron amplification in gas detectors. Img. Courtesy of CERN

Principles of GEM operation

 GEM detectors typically consist of a stack of foils, each operated at ca. 500V difference placed a drift cathode and a readout anode.

- GEM detectors offer excellent spatial, temporal and energy resolution at costs much lower than solid-state ones.
- GEM detectors tolerate extremely high radiation levels.

Img. courtesy L. Ropelewski, CERN

14 05 2014

GEM & Micromegas Readout

- GEMs and Micromegas decouple the readout geometry from charge collection and amplification.
- Thus readout is not limited to parallel strips/wires.

Cartesian, Compass, LHCb

Small Angle

Haxagonal pads, MICE

L. Ropelewski, GEM for ALICE TPC upgrade, CERN

Pixel Readout

- It is even possible to use dedicated CMOS pixel-readout chips with a GEM or MicroMega amplifier
- Medipix a family of hybrid silicon pixel detectors developed by an international collaboration of institutes
- Used at the Large Hadron Collider
- Detectors in the family:
 - Medipix I collaboration formed in early 90', 64x64 pixels
 - Medipix 2 collaboration formed in late 90', 256×256 pixels
 - Timepix a version of Medipix 2 with the functionality of time measurements
 - Medipix 3 collaboration formed in 2006, determines energy levels of detected photons

Images are courtesy of CERN and Medipix collaboration

GEMs in HEP experiments

Several HEP experiments use or will use GEM detectors, e.g.:

TOTEM T2 telescope

Techtra

a successful technology transfer from CERN

- Was established as consulting company in 1998
- Has coordinated contacts between CERN and Polish industry
- Has partnered on R&D and technology transfer projects:
 - Silver-based High-Temperature Superconductors
 - CERN Micro-Chemical Vias for interconnections in flexible printed circuit boards
- Manufactures Gas Electron Multiplier (GEM) foils using technology licensed from CERN:
 - GEM licenses acquired in 2002, 2004, and 2012
 - In 2013 Techtra TTA was the only CERN-qualified supplier of small GEM foils that were delivered to CERN itself
 - Techtra is finishing the work on large-area GEM foil production
- Techtra builds GEM-based industrial detectors for NDT.

Towards the "GEM-View" detector

- The current market for GEM-based detectors is HEP experiments
- To bring the technology to a wider audience Techtra has collaborated with the Polish National Centre for Nuclear Research to build a detector for nondestructive testing.

NATIONAL CENTRE for NUCLEAR RESEARCH Świerk

Techtra's & NCNR's NDT detector

- The main problem is readout we can't afford a large area (~IxI m²) pixel readout.
- In HEP this is not a problem:
 - We assume that there is one event at a time
 - > Thus we can get away without a large area pixel readout
 - But this limits the allowable particle flux!
- To work with larger particle fluxes we have built a scanner head

Some early prototypes

Our first try: multiple electrodes to scan without moving parts

Radiographs made with GEM-View

NATIONAL CENTRE for NUCLEAR RESEARCH Świerk

Our Production Facility

- We are located in the Wroclaw Technological Park
- We have support for flexible printed circuits manufacturing:
 - Dry resist lamination and development
 - Copper etching
- We have a wet Kapton etching line exclusively used for GEM foils
- We currently can manufacture GEM foils up to 300 x 300 mm²
- We undergo an upgrade which will allow us to produce GEM foils up to 600 x 2000 mm²

R&D Kapton etch line

WISE Chemstar equipment: Industrial grade Cu and Kapton etch line for large GEMs

GEM production technology & limitations

- The GEM is typically made of a copper polyimide foil in which the holes are patterned using photolitography and chemical etching.
- The special process is a polyimide etching bath developed by Rui De Oliveira at CERN.
- Other processes are typical, but the tolerances on dimensions and overall pattern uniformity however much stricter.
- Thus the production uses typical processes, but at their most precise limits.

14 05 2014

- Originally, the GEMs were manufactured by applying photolithography to both sides.
- Base material is 50um adhesiveless copperclad polyimide.

Application of dry-film photoresist

• UV pattern exposure

Develop unexposed resist

Etch Copper & strip resist

CERN patented polyimide etch

- Anisotropic!
- Very little undercut
- Can tune the angle

- Finally run another photolitography to pattern the elctrodes
- Apply copper passivation in an acid bath

The main problem is misalignment

For a large area GEM (>= 30x30 cm²) it is nearly impossible to reliably align the masks to within 2um

Single-mask technique

- The solution is not to try to align
- But work from one side only!
- You first pattern the holes and etch polyimide from one side.

Single-mask technique

- R. De oliveira has show how to use electrical corrosion protection to etch the bottom copper, while keepint the unexposed top one intact.
- Finally, a second polyimide etch forms the cones.

GEM research directions & unknowns

Other materials:

- Polyimide is hygroscopic, possible to replace with a les moisture adsorbing material?
- Is it possible to manufacture resistive electrodes?
- Lower-Z materials
- Use of normal fiberglass laminate (Thick GEM)
- Operating stability:
 - Limiting ion backflow.
 - Intentional stack miaslignment.
 - Many new GEM geometries

14.05.2014

How radiation-resistant a GEM really is?

Img L. Ropelewski, GEM for ALICE TPC upgrade, CERN 2012

