
Technology of GEMs and their 

applications in detectors 

P. Bielowka (Techtra) 
J. Chorowski (University of Wroclaw) 

K. Gut (Techtra) 

Wroclaw, 14.05.2014 



14.05.2014 

Outline 

 Gaseous radiation detectors and history of GEM 

development 

 Principles of GEM detector operation 

 GEM detector uses 

 GEM production technology & limitations 

 Research directions & unanswered questions 

 

 



14.05.2014 

Single-wire proportional detector 

 Consider an ionizing particle travelling through gas (e.g. Ar) 

 The amount of electron-ion pairs is proportional to the energy 

loss of the particle 

Ionizations 

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN, Geneve 1977 
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Single-wire proportional detector 

 If electrical field is applied to the gas, we can collect the 

electrons at the anode 

 But the signal is extremely small (uV) 

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN, Geneve 1977 
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Single-wire proportional detector 

 Applying a large electric field allows us to create avalanche 

secondary ionization in the gas 

 The signal is large, but  we the magnitude depends on 

avalanche length – no proportionality to energy loss! 

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN, Geneve 1977 
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Single-wire proportional detector 

 We need both a small-field proportional region to collect the 

primary-ionized electrons 

 And a large field region of controlled geometry to form the 

amplifying secondary ionization avalanche 

 Simplest case: an anode wire in a cylindrical cathode: 

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN, Geneve 1977 
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Since the electric field decreases as 1/x2 with 

the distance from the anode, the avalanche 

region will form under radius r. 
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Multi-wire proportional chamber 

 To record the position of the particle, we can use several parallel 
wires between two cathode planes: 

 

 

 

 

 

 

 For a 2D localization we can use 2 wire planes at different 
orientations 

 The development of MVPC in 1968 gave G. Charpak the Nobel prize 
in 1992! 

F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN, Geneve 1977 
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MWPC limitations 

 MWPC for a long time was the work-horse of High 

Energy Physics (HEP) experiments. 

 However, it has several limitations: 

 The spatial resolution is limited by wire spacing (few mm) 

 Moreover, the wires interact through electrostatic forces (they 

at the same potential). 

 Thus they will resonate when placed too closely. 

 At higher particle fluxes positive ions are not collected fast 

enough which leads to spatial charge build-up and gain drops. 

 

 

F. Sauli, A. Sharma, Microstrip Gaseous Detectors 
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Micro-pattern gaseous detectors 

 Remember what is needed: 

 A large low electric-field drift region in which primary 

ionization will take place and electrons will drift towards 

readout. 

 A small and controlled large electric-field amplification region in 

which the collected char will be avalanche-multiplied. 

 Micro-pattern gaseous detectors (MPGDs) are designs 

which utilize modern electronic manufacturing processes 

to shape the electrical field. 
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Multi-strip detector 

 In 1988 Oed et al. proposed to replace wires with thin 

PCB traces. 

 Structure is rigid and can 

use fine stripes pitch. 

 Positive ions are quickly 

collected by cathode strips. 

 However sparks between 

neighboring anode and 

cathode stripes can 

destroy the device!  

 

 F. Sauli, A. Sharma, Microstrip Gaseous Detectors 
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MicroMegas 

 MicroMegas (Micro-MEsh Gaseous Structure) were invented in 1992 by G. 

Charpak and I. Giomatrias.  

 They consist of a micro-strip plane above which an conducting mesh is placed: 

 

 

 

 

Y. Giomataris, Ph. Rebourgeard, J.P. Robert, G. Charpak, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-

flux environments, img. courtesy of Wikipedia 
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Gas Electron Multiplier (GEM) 

 The GEM was introduced in 1997 by F. Sauli at CERN 

 It is a thin (50um) parallel-plates capacitor with holes. 

 Thus it creates locally high electric field! 

F. Sauli, GEM:  A new concept for electron amplification in gas detectors. Img. Courtesy of CERN 
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Principles of GEM operation 

 GEM detectors typically consist of a stack of foils, each operated 

at ca. 500V difference placed a drift cathode and a readout anode. 

 

 

 

 

 

 

 GEM detectors offer excellent spatial, temporal and energy 

resolution at costs much lower than solid-state ones. 

 GEM detectors tolerate extremely high radiation levels. 

 

 

 

Img. courtesy L. Ropelewski, CERN 
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GEM & Micromegas Readout 

 GEMs and Micromegas decouple the readout geometry 

from charge collection and amplification.  

 Thus readout is not limited to parallel strips/wires. 

 

Cartesian, Compass,  

LHCb 

Small Angle Haxagonal pads, MICE Mixed, TOTEM 

L. Ropelewski, GEM for ALICE TPC upgrade, CERN 
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Pixel Readout  

 It is even possible to use dedicated CMOS pixel-readout chips with a GEM or 

MicroMega amplifier 

 Medipix – a family of hybrid silicon pixel detectors developed by an international 

collaboration of institutes 

 Used at the Large Hadron Collider 

 Detectors in the family: 

 Medipix 1 – collaboration formed in early 90’,  64x64 pixels 

 Medipix 2 – collaboration formed in late 90’,  256×256 pixels 

 Timepix – a version of Medipix 2 with the functionality of time measurements 

 Medipix 3 – collaboration  

formed in 2006,  determines 

energy levels of detected 

photons 

 
Images are courtesy of CERN and Medipix collaboration 
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GEMs in HEP experiments 

 Several HEP experiments use or will use GEM detectors, e.g.: 

Target spectrometer  

          PANDA 

TOTEM T2 telescope 

The ALICE TPC 
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Techtra 

a successful technology transfer from CERN 

 Was established asa consulting company in 1998 

 Has coordinated contacts between CERN and Polish industry 

 Has partnered on R&D and technology transfer projects: 

 Silver-based High-Temperature Superconductors 

 CERN Micro-Chemical Vias for interconnections in flexible printed 
circuit boards 

 Manufactures Gas Electron Multiplier (GEM) foils using 
technology licensed from CERN: 

 GEM licenses acquired in 2002, 2004, and 2012 

 In 2013 Techtra TTA was the only CERN-qualified supplier of small 
GEM foils that were delivered to CERN itself 

 Techtra is finishing the work on large-area GEM foil production 

 Techtra builds GEM-based industrial detectors for NDT. 
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Towards the “GEM-View” detector 

 The current market for GEM-based detectors is HEP 

experiments 

 To bring the technology to a wider audience Techtra has 

collaborated with the Polish National Centre for Nuclear 

Research to build a detector for nondestructive testing.  

NATIONAL CENTRE for 

NUCLEAR RESEARCH Świerk 
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Techtra’s & NCNR’s NDT detector  

 The main problem is readout – we can’t afford a large 

area (~1x1 m2) pixel readout. 

 In HEP this is not a problem: 

 We assume that there is one event at a time 

 Thus we can get away without a large area pixel readout 

 But this limits the allowable particle flux! 

 To work with larger particle fluxes we have built a 

scanner head 

NATIONAL CENTRE for 

NUCLEAR RESEARCH Świerk 
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Some early prototypes 

Our first try: multiple electrodes to scan without moving parts 
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Radiographs made with GEM-View 

NATIONAL CENTRE for 

NUCLEAR RESEARCH Świerk 
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Our Production Facility 

 We are located in the Wroclaw Technological Park 

 We have support for flexible printed circuits manufacturing: 

 Dry resist lamination and development 

 Copper etching 

 We have a wet Kapton etching line exclusively used for GEM foils 

 We currently can manufacture GEM foils up to 300 x 300 mm2 

 We undergo an upgrade which will allow us to produce GEM foils up to 

600 x 2000 mm2 

R&D Kapton etch line 

WISE Chemstar equipment: 

Industrial grade Cu and Kapton etch line for large GEMs 
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GEM production technology & limitations 

 The GEM is typically made of a copper polyimide foil in 

which the holes are patterned using photolitography and 

chemical etching. 

 The special process is a polyimide etching bath developed 

by Rui De Oliveira at CERN. 

 Other processes are typical, but  

the tolerances on dimensions 

and overall pattern uniformity   

however much stricter. 

 Thus the production uses  

typical processes, but at their 

most precise limits. 
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Typical process 

 Originally, the GEMs were manufactured by applying 

photolithography to both sides. 

 Base material is 50um adhesiveless copperclad polyimide. 

Apical brand polyimide, 

50um 

Copper, 5um 

Copper, 5um 

10nm Chromium layer  

instead of adhesive 
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Typical process 

 Application of dry-film photoresist 
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Typical process 

 UV pattern exposure 
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Typical process 

 Develop unexposed resist 
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Typical process 

 Etch Copper & strip resist 
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Typical process 

 CERN patented polyimide etch 

 Anisotropic! 

 Very little undercut 

 Can tune the angle 
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Typical process 

 Finally run another photolitography  

to pattern the elctrodes 

 Apply copper passivation in an acid bath 
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The main problem is misalignment 

 For a large area GEM (>= 30x30 cm2) it is nearly 

impossible to reliably align the masks to within 2um 
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Single-mask technique 

 The solution is not to try to align 

 But work from one side only! 

 You first pattern the holes and etch polyimide from one 

side. 
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Single-mask technique 

 R. De oliveira has show how to use electrical corrosion 

protection to etch the bottom copper, while keepint the 

unexposed top one intact. 

 Finally, a second polyimide etch forms the cones. 
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GEM research directions & unknowns 

 Other materials: 

 Polyimide is hygroscopic, possible to replace with a les 
moisture adsorbing material? 

 Is it possible to manufacture resistive electrodes? 

 Lower-Z materials 

 Use of normal fiberglass laminate (Thick GEM) 

 Operating stability: 

 Limiting ion backflow. 

 Intentional stack miaslignment. 

 Many new GEM geometries 

 

 

 How radiation-resistant a GEM really is? 

 

 

Img L. Ropelewski, GEM for ALICE TPC upgrade, CERN 2012 


