

Industrial LINAC at NDT laboratory and its potential applications

PIOTR WILK WROCŁAW TECHNOLOGY PARK

Infrastructure

Lambda building Bunker (radiation protection)

Accelerator:

Principle of operating Beam parameters Manipulators

Applications

Radiography

Semiconductors

Gemstones

Polymers

Utilization, sterylization

Future plans

Tomography, electron beem applicators

Lambda Building

PARKING

Bunker

Industrial accelerator station

Produced by National Centre for Nuclear Research - Świerk

Principle of operating

Parameters

X-RAY BEAM ENERGY X-RAY BEAM DOSE RATE

RADIATION STABILITY FOCAL SPOT SIZE RADIATION LEAKAGE X-RAY BEAM ASYMMETRY X-RAY BEAM FLATNESS

radiation RADIOGRAPHIC QUALITY HALF-VALUE LAYER (9 MV)

dual: 6 or 9 MV max. 20 Gy/min for 9 MeV at the distance 1 m from target \leq 2% during the period of 8 hours 2 mm **≤ 0,1 %** +5%better than 10% within 80% of beam width around axis **1-2T or better** 30,0 mm for STEEL 15,2 mm for LEAD

PRIMARY COLLIMATOR CONE28°IRRADIATION FIELD DIAMETER50 cm

in the plane located 1 m from the target

Manipulators

Accelerator (2 axes) **Object (3 axes) Detector (2 axes)** Vertical: Z = 1,5 m Vertical: Z = 1,5 m Horizontal: X,Y = 1 m Horizontal: X = 0,6 m Tilting: α : ± 22,5° Rotating: 360 ° Load: 5 tons

Radiography

Radiography - imaging technique

Certain amount of photons is absorbed by the object.

Detector (film) illustrates the internal structure (density distribution).

Electronics

Diodes or transistors after beeing irradiated with electrons improve their **switching speed**

Advantages:

Switching speed increases (But it can be recovered by annealing) Also finished products can be irradiated

Jewellery

Gemstones irradiated with electrons change their **color**

Polymers

Radiation can influnce the structure of polymers

Three-dimensional links between adjacent polymer chains

Radiation can influnce the structure of polymers

Polymers

Insulation jacketing (wires)

Resistant to fire and short circuit

Resistant to chemical solvents

Higher tensile strength

Curring of ink or coatings

The use of volatile organic coumpounds is not neccessary **Tires vulcanisation**

Degradation

Teflon to produce powders Cellulose to produce viscose

Ion selective membranes

Heat-shrinkable tubes and foils

Sterylization

Scissioning the DNA of patogens

Waste water treatment

Medical instruments dezinfection

Food conservation

Kills patogens and insects

Sprout inhibiting

Delay of ripening

Enviroment

Flue gas treatment - high efficiency of SOx NOx removal By pass product is fertilizer

(Salmonella and E. coli)

Future plans

Tomography

Electron beam applicators

Extra equipment for NDT laboratory

Videoendoscope

Utrasonic defectoscope

Material science laboratory

Micro-CT, SEM, XRD Chemical analyser Hardness testers Servohydraulic fatigue machines

Maybe magnet

Thank you for your attention