

High fluence neutron irradiation of coated conductors

M. Eisterer Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Vienna, Austria

Outline

- Motivation: lifetime/design of fusion power plant/accelerator magnet
- Neutron induced damage
- Influence of radiation damage
 - Transition temperature
 - Critical currents
- Comparison: Coated conductors and Nb₃Sn
- Outlook

Acknowledgments

Rainer Prokopec

Thomas Baumgartner

David Fischer

Harald Weber

Former PhD students: Johann Emhofer, Michal Chudy Samples provided by AMSC, SuperPower, SuNam Funding: EFDA/EUROFUSION, CERN

Production of 14 MeV neutrons – deposition of energy in the "first wall" \rightarrow substantial material problems (~1 MW/m²)!

At the magnet location: Attenuation by a factor of ~ 10⁶. Scattering processes lead to a "thermalization" of the neutrons!

Neutron Energy Distribution

Motivation

The superconducting properties do degrade at high neutron fluences.

- Lifetime of the power plant/accellerator magnet
- Radiation shielding

Influence on the costs and competitiveness of nuclear fusion!

Which superconductor can withstand the highest radiation load?

NEUTRON IRRADIATION AND RESULTING DEFECT STRUCTURE

TRIGA MARK II Reactor

Neutron flux determination in 1985: Thermal (<0.55 eV) / fast (>0.1 MeV) flux density: $6.1/7.6 \times 10^{16} \text{ m}^{-2}\text{s}^{-1}$

Core renewed in 2012: fast neutron flux density of ~ $4.1 \times 10^{16} \text{ m}^{-2}\text{s}^{-1}$

Nickel monitor is used in each irradiation!

Neutron Irradiation: Created Defects (Cuprates)

```
Direct collisions
(high energy neutrons E>0.1 MeV)
```

```
Defect cascades

\emptyset \sim 5 \text{ nm}

Density

5 \cdot 10^{22} \text{ m}^{-3} at a fluence of 10^{22} \text{ m}^{-2}

(d_{av} \sim 27 \text{ nm}, B_{\phi} \sim 3 \text{ T})

2.5 \cdot 10^{23} \text{ m}^{-3} at a fluence of 5 \cdot 10^{22} \text{ m}^{-2}

(d_{av} \sim 16 \text{ nm}, B_{\phi} \sim 8 \text{ T})
```


Defect structure YBCO: small defects

Positron annihilation lifetime spectroscopy (PALS) Slovak University of Technology: Cu-O di-vacancies

Veterníková et al., J. Fusion Energy 31 (2012) 89

Defect structure YBCO: small defects

Positron annihilation lifetime spectroscopy (PALS): Cu-O di-vacancies

Veterníková et al., J. Fusion Energy 31 (2012) 89

Cu-O di-vacancy concentration: highly non-linear with fluence!

Neutron Irradiation: Created Defects

Neutron capture reactions (low energy neutrons)

 $^{157}Gd + n \rightarrow {}^{158}Gd + \gamma \ (\sigma \sim 2x10^5 \ b) \\ Recoil energy: ~ 30 \ eV \rightarrow single displaced atom$

Shielding of thermal neutrons

Irradiation inside Cd-foil: Removes the low energy neutrons (E<0.55 eV) Better simulation of a fusion spectrum

Samples

AMSC 344C Amperium (ASC-40)

- RABiTS template
- REBCO by MOD Y:Dy:Ba:Cu=1:0.5:2:3 (1.2 μm)
- Brass laminated
- SuperPower SCS4050/SCS4050-AP
 - Hastelloy MgO-IBAD Template
 - GdBCO by MOD (1 μm)
 - BZO nano-particles (SCS4050-AP)
- SuNam
 - SS MgO-IBAD Template
 - GdBCO by RCE-DR (1.35 µm)

CHANGES OF SUPERCONDUCTING PROPERTIES

Decrease in Transition Temperature

Decrease in Transition Temperature: Nb₃Sn

Decrease in T_c : ~0.35 K at a fluence of 10²² m⁻² (2%)

Change in Irreversibility Field

H||ab

 B_{irr} shifts with T_c to lower temperatures

Change in Irreversibility Field

H||c

B_{irr} shifts to lower temperatures, but the slope increases.

Anisotropy of B_{irr}

Degradation of the critical current for H||ab.

Degradation of the critical current starts at higher fluences for $H\|c$.

The critical currents at low temperatures and high fields are still $(3.3 \times 10^{22} \text{ m}^{-2})$ above the original values.

Angular dependence of I_c

Minimum I_c is not always at H||c. Angle-resolved measurements are desirable.

Critical Current: Nb₃Sn

Critical Currents: Comparison YBCO – Nb₃Sn

Which compound is more robust against irradiaton?

WHICH DEFECTS ARE RESPONSIBLE FOR FLUX PINNING?

Large vs. small defects (melt textured YBCO)

Linear scaling with total (cascades+di-vacancies) defect density! Annealing possible?

Conclusions

- It is currently not clear if Nb₃Sn or REBCO is more robust against neutron irradiation at low temperatures.
- The radiation resistance decreases at higher temperatures. Restriction to low temperatures (LH₂?).
- I_c degrades in coated condutctors at rather low fluences for H||ab. The tape becomes less anisotropic.

Outlook

- Characterization of irradiated tapes from AMSC, SuNam and Superpower (2.3/2.9/3.2x10²² m⁻²)
- Irradiation until properties severely degrade
 - Coated conductors
 - Nb₃Sn wires
- Thermal annealing

