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 Motivation: lifetime/design of fusion power 

plant/accelerator magnet 

 Neutron induced damage 

 Influence of radiation damage 

• Transition temperature 

• Critical currents 

 Comparison: Coated conductors and Nb3Sn 
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Production of 14 MeV neutrons – deposition of energy in the “first 
wall” → substantial material problems (~1 MW/m²)! 

At the magnet location: Attenuation by a factor of ~ 106. Scattering 
processes lead to a “thermalization” of the neutrons! 

Nuclear Fusion 



Neutron Energy Distribution 



Motivation 

The superconducting properties do degrade 
at high neutron fluences. 

• Lifetime of the power plant/accellerator magnet 
• Radiation shielding 

Influence on the costs and competitiveness of 
nuclear fusion!  
Which superconductor can withstand the 
highest radiation load? 
 
 



NEUTRON IRRADIATION AND 
RESULTING DEFECT STRUCTURE 



TRIGA MARK II Reactor 
Neutron flux determination in 1985:  
Thermal (<0.55 eV) / fast (>0.1 MeV) flux density: 6.1/7.6 × 1016 m-2s-1 
 
Core renewed in 2012: fast neutron flux density of ~ 4.1× 1016 m-2s-1 

Nickel monitor is used in each irradiation!  



Neutron Irradiation: Created Defects (Cuprates) 

Direct collisions  
(high energy neutrons E>0.1 MeV) 
 
Defect cascades  
  Ø ~ 5 nm  

Density  
 5∙1022 m-3 at a fluence of 1022 m-2 
    (dav~ 27 nm, Bφ~ 3 T) 
 2.5∙1023 m-3 at a fluence of 5∙1022 m-2 
    (dav~ 16 nm, Bφ~ 8 T) 
 



Defect structure YBCO: small defects 
Positron annihilation lifetime spectroscopy (PALS) 
Slovak University of Technology: Cu-O di-vacancies 
  Veterníková et al., J. Fusion Energy 31 (2012) 89 

22Na  →  22Ne (+γ) +e+,  e++e- → 2γ 2.6y 

1274 keV 511 keV 



Defect structure YBCO: small defects 
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Positron annihilation lifetime spectroscopy (PALS): Cu-O di-vacancies  

Cu-O di-vacancy concentration: highly non-linear with fluence! 

Chudý et al., 
 SUST 25 (2012) 075017 

Melt textured YBCO 

Veterníková et al., J. Fusion Energy 31 (2012) 89 



Neutron Irradiation: Created Defects 
Neutron capture reactions (low energy neutrons)   

 

157Gd + n → 158Gd + γ  (σ ~ 2x105 b) 
Recoil energy: ~ 30 eV → single displaced atom  
 



Shielding of thermal neutrons 

Cadmium 

Irradiation inside Cd-foil: Removes the low energy neutrons (E<0.55 eV) 
Better simulation of a fusion spectrum 



Samples 

 AMSC 344C Amperium (ASC-40)  
• RABiTS template 
• REBCO by MOD Y:Dy:Ba:Cu=1:0.5:2:3 (1.2 µm) 
• Brass laminated 

 SuperPower SCS4050/SCS4050-AP  
• Hastelloy MgO-IBAD Template 
• GdBCO by MOD (1 µm) 
• BZO nano-particles (SCS4050-AP) 

 SuNam 
• SS MgO-IBAD Template 
• GdBCO by RCE-DR (1.35 µm)  



CHANGES OF SUPERCONDUCTING 
PROPERTIES 



Decrease in Transition Temperature 

Decrease in Tc: ~2.5 K at a fluence of 1022 m-2 (2.7%) 
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Decrease in Transition Temperature: Nb3Sn 

Decrease in Tc: ~0.35 K at a fluence of 1022 m-2 (2%) 



Change in Irreversibility Field 

H||ab 

Birr shifts with Tc to lower temperatures 
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Change in Irreversibility Field 
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Birr shifts to lower temperatures, but the slope increases. 



Anisotropy of Birr 
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Critical Currents: AMSC (YBCO) 
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Critical Currents: AMSC (YBCO) 

Degradation of the critical current for H||ab. 
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Critical Currents: AMSC (YBCO) 

Degradation of the critical current starts at higher fluences for H||c. 
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Critical Currents: AMSC (YBCO) 

The critical currents at low temperatures and high fields are 
still (3.3×1022 m-2) above the original values. 
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Angular dependence of Ic 

-10 0 10 20 30 40 50 60 70 80 90 100
20

30

40

64 K, 4 T
 unirr.
 2⋅1021 m-2

 

 

I c(A
)

angle (°) 

Minimum Ic is not always at H||c. 
Angle-resolved measurements are desirable. 

Old SuperPower tape 
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Critical Current: Nb3Sn 



Critical Currents: Comparison YBCO – Nb3Sn 

Which compound is more robust against irradiaton? 
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WHICH DEFECTS ARE RESPONSIBLE 
FOR FLUX PINNING? 



Large vs. small defects (melt textured YBCO) 
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Linear scaling with total (cascades+di-vacancies) defect density! 
Annealing possible? 



Conclusions 

 It is currently not clear if Nb3Sn or REBCO is 
more robust against neutron irradiation at 
low temperatures. 
 The radiation resistance decreases at higher 

temperatures. Restriction to low 
temperatures (LH2?). 
 Ic degrades in coated condutctors at rather 

low fluences for H||ab. The tape becomes 
less anisotropic. 



Outlook 

 Characterization of irradiated tapes from AMSC, 
SuNam and Superpower (2.3/2.9/3.2x1022 m-2) 

 Irradiation until properties severely degrade 
 Coated conductors 
 Nb3Sn wires 

 Thermal annealing 
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