Thomas Baumgartner

May 12, 2014

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

<□> <团> <Ξ> <Ξ> <Ξ> <Ξ</p>

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Conclusions

1 Introduction

2 Experimental

3 Results

4 Conclusions

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Conclusions

CERN has been an important partner throughout the past four years and funded the Nb_3Sn irradiation study discussed in this presentation.

Acknowledgments

Rainer Prokopec provided the presented data on insulating materials.

Thomas Baumgartner

Outline

Introduction

- Technological objective Nb₃Sn wire samples Expectations
- Experimental
- Results
- Conclusions

1 Introduction

- Technological objective
- Nb₃Sn wire samples
- Expectations

Outline

(日) (同) (三) (三) (三) (○) (○)

Thomas Baumgartner

Outline

Introduction

Technological objective Nb₃Sn wire samples Expectations

Experimental

Results

Conclusions

Technological objective

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Collaboration with CERN

- Examined Nb₃Sn wires are candidates for LHC upgrade
- Replacing the Nb-Ti inner triplets (quadrupole magnet assemblies for focusing) with Nb₃Sn can improve the luminosity
- Intense and complex radiation field near the interaction points (neutrons, protons, pions, ...)
- What is the life expectancy of a Nb₃Sn inner triplet magnet under these conditions?

Thomas Baumgartner

Outline

Introduction

- Technological objective Nb₃Sn wire samples Expectations
- Experimental
- Results
- Conclusions

Ta alloyed RRP
 0.8 mm, 54 sub-elements

- Ti alloyed RRP 0.8 mm, 108 sub-elements
- Binary IT

1.25 mm, 246 sub-elements

Ta alloyed PIT

1.0 mm, 192 sub-elements

Ta alloyed PIT

0.7 mm, 114 sub-elements

Nb₃Sn wire samples

Thomas Baumgartner

Outline

Introduction

Technological objective Nb₃Sn wire samples Expectations

Experimental

Results

Conclusions

Expectations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Effects of radiation damage on Nb₃Sn

- Critical temperature T_c decreases
 Explanation: Disorder leads to a reduction of the electronic density of states
- Upper critical field *B*_{c2} increases

Explanation: Mean free path of electrons decreases, thus normal state resistivity increases

 $\kappa = \kappa_0 + C \sqrt{\gamma} \rho_{\rm n}, \qquad B_{\rm c2} = \kappa \sqrt{2} \, B_{\rm c}$

• Critical current density J_c increases up to a certain fluence, then decreases again

Explanation: Sum of the above effects

Expectations

Behavior of $J_c(\Phi t)$

- \blacksquare J_c increases at low fluences
- Usually explained with an increase in B_{c2}
- Some reports on changes in flux pinning due to radiation induced pinning centers^{1,2}
- T_c degradation dominates at high fluences

¹M. W. Guinan et al.: Informal Report, LLNL, 1984
 ²T. Okada et al.: J. Appl. Phys. 63 (9), pp. 4580–4585, 1988

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Effects of Fast Neutron Irradiation on State-of-the-Art Nb₃Sn Wires

Thomas Baumgartner

Outline

Introduction

Experimental

Irradiation SQUID magnetometry Transport measurements Br2(T) measurements

Results

Conclusions

2 Experimental

- Irradiation
- SQUID magnetometry
- Transport measurements
- $B_{c2}(T)$ measurements

Thomas Baumgartner

Outline

Introduction

Experimental

Irradiation SQUID magnetometry Transport measurements B_{c2}(T) measurements

Results

Conclusions

Irradiation

- TRIGA Mark-II reactor in Vienna
- Fast neutron flux density $\Phi_f = 4.1 \cdot 10^{16} \text{ m}^{-2} \cdot \text{s}^{-1}$ (E > 0.1 MeV)
- Sequential irradiation of short wire samples for magnetometry
- Radioactivity reduced by 2 orders of magnitude relative to transport samples
- Fluence step size: $\sim 2 \cdot 10^{21} \text{ m}^{-2}$
- Ni samples included for fluence monitoring (reaction threshold ≈ 1 MeV → fast neutrons only)

Thomas Baumgartner

Introduction

Experimental

Irradiation SQUID magnetometry Transport measurements B_{c2}(T) measurements

Results

Conclusions

SQUID magnetometry

J_c from magnetization loops

- Quantum Design MPMS XL max. field: 7 T
- Irreversible magnetic moment m_{irr}(B, T) obtained from magnetization loops in the temperature range 4.2 - 15 K
- J_c(B) evaluated at each temperature using m_{irr} and sub-element geometry³
- T_c obtained from AC susceptibility measurements

³T. Baumgartner et al.: *IEEE Trans. Appl. Supercond.* **22** (3), 6000604, 2012

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Thomas Baumgartner

Outline

Introduction

Experimental

Irradiation SQUID magnetometry Transport measurements $B_{c2}(T)$ measurements

Results

Transport measurements

- ~ 0.5 m of wire on Ti-6Al-4V barrel (mini VAMAS, Ø 23 mm)
- Measurements performed in applied fields of up to 15 T
- Maximum current of 1000 A in liquid helium

-

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Thomas Baumgartner

Transport measurements

Comparison with magnetometry results

- Good agreement between magnetometry results and transport critical current measurements
- Less than 15% deviation between extrapolated magnetometry data and transport results

Thomas Baumgartner

Outline

Introduction

Experimental

Irradiation SQUID magnetometry Transport measurements

 $B_{c2}(T)$ measurements

Results

Conclusions

- B_{c2}(T) obtained from resistivity measurements (temperature sweep at constant field)
- Direct measurements possible for $T \gtrsim T_c/2$ (15 T max. field)
- Extrapolation to lower temperatures
- Measurements performed on 1 unirradiated sample of each wire type, and 3 irradiated samples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$B_{c2}(T)$ measurements

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Effects of Fast Neutron Irradiation on State-of-the-Art Nb₃Sn Wires

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

3 Results

- Critical temperature
- Critical current density
- Upper critical field
- Volume pinning force
- Two-mechanism model

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

- Small T_c degradation within the examined fluence range (~2% at $\Phi_f t = 10^{22} \text{ m}^{-2}$)
- Can be described with a linear relationship

$$T_{\rm c}(\Phi_{\rm f} t) = T_{\rm c}(0) - k_{\rm T} \Phi_{\rm f} t$$

Slope k_T is smaller by about 1/3 in the binary wire, probably due to a higher initial degree of order

Critical temperature

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density Upper critical field Volume pinning force Two-mechanism model

Conclusions

Critical temperature

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field Volume pinning force

Two-mechanism model

Conclusions

Critical current density

- *J*_c(*T*, *B*) obtained from magnetometry data after each irradiation step
- Data used to assess $J_c(\Phi_f t)/J_c(0)$
- **7** T max. applied field \Rightarrow evaluation at lower field values
- Significant increase found in all examined wire types

Critical current density

Fast Neutron Irradiation on State-of-the-Art Nb₃Sn Wires

Effects of

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density Upper critical field Volume pinning force

Two-mechanism model

Conclusions

Thomas Baumgartner

Outline

Introduction

Experimental

Results Critical temperature Critical current density Upper critical field Volume pinning force Two-mechanism

model

Conclusions

Critical current density

"Old" irradiation studies

⁴C. L. Snead Jr., D. M. Parkin.: Nucl. Technol. 29 (3), pp. 264–267, 1976
⁵F. Weiss et al.: IEEE Trans. Mag. 23 (2), pp. 976–979, 1987

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

• Data obtained at $T \gtrsim T_c/2$ (15 T max. field)

- Extrapolation based on the dirty limit WHH function⁶
- Unexpectedly low irradiation induced increase of B_{c2} found in the 3 examined samples

Upper critical field

⁶E. Helfand, N. R. Werthamer: *Phys. Rev.* **147** (1), pp. 288–294, 1966

Thomas Baumgartner

Upper critical field

- Binary wire IT-246
- $\Phi_{\rm f} t = 1.0 \cdot 10^{22} \,{\rm m}^{-2}$
- B_{c2}(T = 0) increases by ~ 3% relative to the unirradiated state
- Similar behavior found in RRP-Ti-108 and PIT-Ta-114

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

What is going on?

- J_c exhibits a considerable increase as a result of irradiation
- \blacksquare B_{c2} increases only slightly
- Changes in the flux pinning behavior must be responsible for the large J_c increase

1.0

0.8

0.6

0.4

0.2

0

0

02

04

 $b = B / B_{o2}^{\star}$

06

Two-mechanism model

Conclusions

Volume pinning force

The concept of scaling

- In Nb₃Sn the volume pinning force $F_p = |\vec{J}_c \times \vec{B}|$ exhibits scaling behavior
- Plotting the normalized volume pinning force vs. the reduced field yields the same curve at different temperatures
- $F_{\mathsf{p}}(b) \propto f(b) = b^p (1-b)^q$
- *p*=0.5, *q*=2 for pure grain boundary pinning⁷

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

⁷D. Dew-Hughes: *Phil. Mag.* **30** (2), pp. 293–305, 1974

0.8

10

Thomas Baumgartner

- Outline
- Introduction
- Experimental
- Results
- Critical temperature Critical current density
- Upper critical field
- Volume pinning force

Two-mechanism model

Conclusions

Volume pinning force

Analysis of unirradiated samples

- $F_p = J_c B$ from magnetometry data normalized at each temperature
- $f(b) = Cb^p(1-b)^q$ used as a fit function
- Algorithm finds p and q which minimize the global error (all temperatures included)

Thomas Baumgartner

Outline

Introduction

Experimental

Results Critical temperature

Critical current density Upper critical field Volume pinning force

Two-mechanism model

Conclusions

Volume pinning force

Analysis of unirradiated samples

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

Volume pinning force

Analysis of irradiated samples

- Optimal p and q change with fluence
- Peak in the pinning function at b_{max} = p/(p+q) is shifted to higher values
- Scaling field values changed only slightly, in agreement with the $B_{c2}(T)$ measurements

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

Volume pinning force

Analysis of irradiated samples

(日)

Binary wire IT-246, before and after irradiation

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density

Upper critical field

Volume pinning force

Two-mechanism model

Conclusions

Two-mechanism model

- Observed behavior is inconsistent with grain boundary pinning (p=0.5, q=2)
- Contribution of a second mechanism was investigated ^{8,9} $f(b) = \alpha b^{p_1} (1-b)^{q_1} + \beta b^{p_2} (1-b)^{q_2}$, $\alpha + \beta = 1$
- Second mechanism was identified as pinning by core interaction between vortices and normal conducting point-like structures $(p_2 = 1, q_2 = 2)^7$
- Point-pinning contribution β was evaluated as a function of fluence for all samples

(日) (日) (日) (日) (日) (日) (日) (日)

⁸H. Küpfer et al.: *J. Appl. Phys.* **51** (2), pp. 1121–1126, 1980

⁹P. Maier, E. Seibt.: Appl. Phys. Lett. **39** (2), pp. 175–177, 1981

⁷D. Dew-Hughes: *Phil. Mag.* **30** (2), pp. 293–305, 1974

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Critical temperature Critical current density Upper critical field Volume pinning force

Two-mechanism model

Conclusions

Two-mechanism model

Point-pinning contribution vs. fluence

 $f(b) = \alpha \, b^{p_1} \, (1-b)^{q_1} + \beta \, b^{p_2} \, (1-b)^{q_2}, \quad p_2 = 1, \, q_2 = 2$

・ロト・日本・日本・日本・日本・日本

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Conclusion Summary Outlook 4 Conclusions

- Summary
- Outlook

Outline

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Effects of Fast Neutron Irradiation on State-of-the-Art Nb₃Sn Wires

Thomas Baumgartner

Outline

Introduction

Experimental

Results

Conclusions Summary Five Nb₃Sn wire types were subjected to sequential fast neutron irradiation up to $\Phi_{\rm f} t = 2 \cdot 10^{22} \,{\rm m}^{-2}$

They appear to be more resilient to radiation than wires used in previous studies

• T_c as a function of fluence shows a linear degradation

- B_{c2} increases only slightly with fluence \Rightarrow large J_c increase is due to changes in the volume pinning force
- Changes in the pinning behavior can be described with a fluence dependent point-pinning contribution using a two-mechanism model¹⁰

¹⁰T. Baumgartner et al.: Supercond. Sci. Technol. 27 (1), 015005, 2014

Outlook

Fast Neutron Irradiation on State-of-the-Art Nb₃Sn Wires

Effects of

Thomas Baumgartner

Outline

- Introduction
- Experimental

Results

Conclusions Summary Outlook

- Maximum in $J_c(\Phi_f t)$ is relevant to life time estimation and comparison with other irradiation studies (different wires or different particles) \Rightarrow irradiation program will be continued
- Transport samples will be irradiated for comparison with magnetometry results and to obtain more high-field data
- Magnetometry measurements will be attempted in fields of up to 15 T using our self-built vibrating coil magnetometer
- Our group is also active in the field of insulating materials

Thomas Baumgartner

Outline

Introduction Experimental Results Conclusions Summary Outlook

Radiation effects on resins

- Similar impregnation process
- Costs for CE higher by a factor of up to 10
- CE can be mixed with epoxy to reduce costs

Thomas Baumgartner

- Outline
- Introduction
- Experimental
- Results
- Conclusions Summarv Outlook

Excursus: insulating materials

Qualification of resins for the ITER TF coils¹¹

- Demands for ITER:
 - Mixing ratio:
 - 40% CE / 60% epoxy
 - Long pot life:
 - viscosity $< 100 \text{ mPa} \cdot \text{s}$ for more than 100 h
 - Maximum curing temperature: $160 + 10^{\circ}$ C for 24 h

- 3 suppliers, 4 resins:
 - Huntsman. Switzerland:
 - LMB 6653 / LMB 6622-4

くしゃ 本面 そうかん ほう うめんろ

- Composite Technologies Development, USA:
 - CTD-425
 - CTD-435
- Industrial Summit Technology, Japan: IST

¹¹K. Humer et al.: Fusion Eng. Des., 88 (5), pp. 350-360, 2013

Thomas Baumgartner

Outline Introduction Experimental Results Conclusions Summary Outlook

Mechanical properties before and after irradiation

ITER design fluence: $1.0 \cdot 10^{22} \text{ m}^{-2}$ (E > 0.1 MeV)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thomas Baumgartner

- Outline
- Introduction
- Experimental
- Results
- Conclusions Summary

Excursus: insulating materials

Material tests for CERN

- S-glass fiber reinforced composites
- 3 different types of epoxy resins
- Several irradiations up to a total absorbed dose of 50 MGy
- Glass fibers are wrapped before Nb₃Sn heat treatment
- Possible surface degradation or contamination
- Effects on the resin / fiber / conductor interfaces must be examined

Thank you for your attention.

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶