Workshop on Radiation Effects in Superconducting Magnets and Materials 2014 (RESMM'14) at Wroclaw POLAND , from May 12 to May 15

Radiation Transport Calculation for the In-Flight Fragment Separator of RISP

Rare Isotope Science Project(RISP) Institute for Basic Science(IBS) Mijung Kim

Raon Accelerator Layout

400

400

400

70 kW

Power on target(kW)

nstitu

IF Separator Layout

Model for PHITS Calculation

descripti resource Bean Dunno Target 01 Q2 Q3 H1 on Primary®beam Dipole to Production Node[01-30] computing Target Collimator 30 node 400 ^{Graphite shielding} blocks Graphite CPU 2.9Ghz Tunastor (16core per 200 node) Memory 64G(4G per 0 core) 500 1000 0 1500 shared /home(84TB) filesystem TS. 200 **Calculation condition** void 0 Iron version: PHITS2.64 Copper Heavy ion: JAM/QMD+GEM Aluminum -200 x [cm] HŤS Hts Neutron(E>20MeV) LTS-13 :JAM/QMD+GEM -400Graphite •Neutron(E≤20MeV) Water :ENDF/B-VI, Titanium -600 Tungsten ENDF/B-VII. JENDL-3.3, JENDL-4.0 -800 500 1000 0 1500 HTS: High temperature superconducting 4/21 LTS : Low temperature superconducting z [cm]

Raon resource summary

HTS Coil specification & Design

Basic specifications of HTS coil

- Operating temperature : ~ 50 K
- Operating current : Amount equivalent to the field gradient of 15 T/m (< critical current of HTS coil)
- Coils shape : Racetrack, Pancake
- Number of HTS coils : 1~4 single pancake (or, 1~2 double pancake)
- HTS wire : 2nd Generation HTS Tape (ReBCO coated conductor-

GdBCO was used for the PHITS calculation)

(width of tape = 12 mm)

- Electric insulation between turns : Metal insulation (stainless steel tape)

HTS wire

- Two candidates : SuperPower, SuNam

Number of HTS coils, Critical current and Operating current -Basic shape of HTS coil

- Cross-sectional dimension of single pancake = 36 mm X 12 mm (considering the acceptability in the yoke space)
- HTS tape : 12 mm width x 0.1 mm thickness
- Thickness of stainless steel insulator = 0.05 mm

Iron Yoke Design

Shape of iron yoke

- 1. Magnetic field performance of magnet (Field gradient, uniformity...) → Dominantly depends on the shape of Iron Yoke
- 2. **Space** for thermal insulation, mechanical structures for coil support and GHe cooling channels.
 - \rightarrow Size and shape of the space also affects the performance of magnet

Magnet Model for PHITS calculation

Magnet Model for PHITS calculation

9/21

Used Primary beams and conditions

Primary beam	Projectile energy (MeV/u)	Graphite Target thickness (cm)	Beam intensity (pps)	wanted RI Frag.
¹⁶ O	333	2.298	4.692x10 ¹⁴	¹² N
⁴⁸ Ca	264	0.752	1.973x10 ¹⁴	¹⁶ C
⁸⁶ Kr	258	0.406	1.127x10 ¹⁴	⁷⁷ Co
²³⁸ U	200	0.136	5.252x10 ¹³	¹³² Sn
²³⁸ U	400	0.374	2.626x10 ¹³	¹³² Sn

Target thickness, beam intensity, magnetic field were obtained from LISE++

Particles and Nuclei from the Target

11/21

Neutrons and Protons from the Target

Flux Distribution[1/cm²/second]

Collimator aperture(¹⁶O beam for ¹²N)

Dipole and Beam Dump area

-400

-600

400

600

800

z [cm]

1000

1200

10 104 10³ 10² 10¹

1400

15/21

Deposited Heat Distribution and Power Density

Institute for Basic Science

How to extract Peak power density of HTS coils ?

For 400 kW, 200MeV/u ²³⁸U

averaging the beam energy in the mesh of 1 cm square in the transverse direction and of 1 cm in the beam direction

Peak power density calculation is ongoing with new design

Total Power Deposit[W]

	_				_	Only for Colls			
Total Power Deposit[W]		coil+iron for : Q2 Q3 H1	at 400 kW → 333 MeV/u ¹⁶ O → 264 MeV/u ⁴⁸ Ca → 258 MeV/u ⁸⁶ Kr → 200 MeV/u ²³⁸ U → 400 MeV/u ²³⁸ U → 400 MeV/u ²³⁸ U → 100 MeV/u ²³⁸ U	H2 Resenting Resents	Total Power Deposit[W]	Long tot constructions 1000 1000 100 100 100 100 100			
	Beam ion	Target [kW]	Collimator [kW]	Coil [kW]	Iron [kW]	Beamdump (Ti+Water)[kW]	Target + Beamdump [kW]		
	¹⁶ O	74.26	23.50	2.63	17.06	4.90+ 246.45	325.60		
	⁴⁸ Ca	75.05	8.65	0.61	13.73	16.21+228.36	319.62		
	⁸⁶ Kr	76.08	5.34	0.33	9.12	31.68+268.17	375.94		
	²³⁸ U_200	86.07	2.52	0.35	3.15	119.85+185.13	391.05 1	9/21	
hS	²³⁸ U_400	80.45	5.40	0.86	9.29	35.81+ 252.54	368.79	3	

Absorbed Dose Rate[MGy/y]

Summary

- Radiation Transport calculation was performed for the components of target and beam dump area of RISP IF separator system using PHITS code
- The production yields of particles and nuclei at the target and their flux distribution and heat deposition on the components are checked for the ¹⁶O, ⁴⁸Ca, ⁸⁶Kr, 200 MeV/u ²³⁸U and 400 MeV/u ²³⁸U beams
- Total power deposition for the each component was extracted
- Absorbed dose rate and HTS coil life time were obtained from the mean power density
 → The calculation of peak power density is ongoing.
- In target area, to protect first quadrupole triplet(Q1 ~ Q3) much stronger shielding is needed

Thank you very much for your attention!

