

High Temperature Superconductors for the Superconducting Links of the Hi-Lumi-LHC Project

Workshop on Radiation Effects in Superconducting Magnets and Materials 2014 (RESMM'14)

F. Broggi, A. Bignami, C. Santini

RESMM'14 Wroclaw May13th 2014

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

LASA Laboratorio Acceleratori Superconduttività Applicata

Francesco Broggi

Francesco.Broggi@mi.infn.it Francesco.Broggi@cern.ch

RESMM'14 Wroclaw May13th 2014

Outline

- HiLumi-LHC
- WP 6 Cold Powering
- Material Comparison (MgB₂, BSCCO, YBCO)
- Real cable composition and comparison vs. bulk
 MgB₂
- Towards the final configuration
- Boron consumption
- Fluencies in the LHC upgraded configuration

Previous Experiences on Magnet Energy Deposition (I)

Study of a new Nb₃Sn design for the LHC insertion quad started in 1995, suggested by the Milan group (L.Rossi)

INFN/TC-95/25 13 Settembre 1993

G. Ambrosiu, F. Amerrano, G. Bellomo, F. Barggi, J., Rossi, G. Volpini,

PRELIMINARY PROPONAL OF A N5.55 QUADRUPOLE MODEL FOR THE low β insertions of the LHC

ISTITUTO NAZIONALE DI FISICA NUCLEARE Socioee di Milanu

Sezione di Milano

INFN/TC-99/04 2 Marzo 1999

STUDY OF THE STABILITY OF THE LHC LOW BETA INNER TRIPLET FOR A NB₃SN DESIGN

Giorgio Ambrosio¹, Francesco Broggi¹, Lucio Rossi²

¹⁾INFN-Sezione di Milano,Laboratorio LASA Via Fratelli Cervi 201,I-20090 Segrate, Italy ²⁾INFN-Sezione di Milano,Laboratoro LASA, Dip. Scienze Fisiche Università di Milano

Previous Experiences on Magnet Energy Deposition (II)

NED (EU) - Candia (INFN); EUCARD – HHH Study of the LHC Phase II upgrade

• **AMTW** Accelerator Magnet Technology Workshop on beam generated heat deposition and quench levels in LHC magnet, CERN, March 2005

• 3rd CARE-HHH-APD Workshop LHC-LUMI-06

'Towards a Roadmap for the Upgrade of the CERN & GSI Accelerator Complex' IFIC, Valencia, Spain – 16-20 October 2006

• CARE-HHH-APD Mini-Workshop IR'07 Frascati, November 2007

Previous Experiences on Magnet Energy Deposition (III)

- After the LHC accident there was a stop in the upgrade studies
- Start again with the SIT (Superconducting Irradiation Test) because of lacking on informations and data on radiation effects on the magnet material Nb₃Sn

Hi-Lumi-LHC Project

Cold Powering via Superconducting Links

Advantages of remote powering:

-Safer long-term operation of powering equipment (power converters, current leads and associate auxiliary devices) located in a radiation-free environment;

-Safer access of personnel to equipment for maintenance, repair, diagnostic and routine tests interventions;

- Reduced time of interventions on power converters, current leads and DFBs if the powering equipment is located outside of the tunnel areas – gain in machine availability ;

- Free space in the beam areas which becomes available for other equipment.

Distribution Feedboxes removed from LHC Tunnel

A. Ballarino, 05/03/2014

Material Comparison

MgB₂ BSCCO YBCO

Primary Fluencies

(Q1-Q3 Collar-->Yoke)

83% of the particles are photons 15% are neutrons

- 29% of the kinetic energy is from photons
- 21% from neutrons
- 31% from pions

High Luminosity 1.5% of the total energy is from photons94% from neutrons

Material Comparison

To scale to 3000 fb⁻¹ multiply for $3x10^{17}$ (σ =100 mb)

Material Comparison Same scale

Simulation progress

- BSCCO and YBCO are similar (for the energy deposition and DPA aspects); MgB₂ has a slightly lower energy deposition
- Definitive definition of the cable geometry and material composition
- Simulation of this cable aside Q1 (P1 geometry), to compare the bulk MgB₂ cable with the composite one

Cable Material Composition

MATERIAL	ATOM CONTENT PARTIAL DENSITIE		
		(g/cm ³)	
MAGNESIUM	0.1225	0.2192	
BORON	0.24501	0.195	
COPPER	0.48231	2.2563	
HYDROGEN	2.03E-02	1.51E-03	
CARBON	4.88E-02	4.31E-02	
NITROGEN	4.07E-03	4.19E-03	
OXYGEN	1.02E-02	1.20E-02	
HELIUM	8.89E-03	2.62E-03	
IRON	4.05E-02	0.16655	
NICKEL	5.55E-03	2.40E-02	
CHROMIUM	1.19E-02	4.55E-02	

Material composition of the cable for the Monte Carlo simulations

The resulting density of the cable is 2.97 g/cm^3 , with a radiation length of 4.846 cm.

Material (Cable) Comparison

- 68% of the kinetic energy is from neutrons
- 17% from pions
- 6% from protons
- 5% from photons

High Luminosity

RESMM'14 Wroclaw May13th 2014 21

Towards the Final Configuration

The definitive layout will be frozen in the future, so we simulated the energy deposition in cables running parallel to Q1 (as done so far) located at different positions.

- in contact with Q1 (Near case) at 0°, 90°, 180° and 270°
- at 1 m distance from the magnet (Far case), at the same angular position.

MgB₂ cable aside Q1 (Near case)

MgB₂ cable at 1 m from Q1 (Far case)

RESMM'14 Wroclaw May13th 2014 24

Dose and DPA

Total Dose and Average DPA for the examined cases

	Near		Far	
Cable	Dose (kGy) \pm	DPA±err%	Dose $(kGy) \pm$	DPA±err%
	err%		err%	
1 (θ=0°)	32.8 ± 0.5	$2.3\text{E-}06\pm0.4$	7.1 ± 1.2	$4.8\text{E-}07\pm0.8$
2 (θ=90°)	38.7 ± 0.3	$2.5\text{E-}06\pm0.3$	7.6 ± 2.1	$5.0\text{E-}07\pm0.7$
3 (θ=180°)	35.3 ± 0.6	$2.4\text{E-}06\pm0.4$	6.5 ± 1.8	$4.8\text{E-}07 \pm 1.0$
4 (θ=270°)	34.2 ± 0.5	$2.3\text{E-}06\pm0.2$	7.4 ± 1.3	$4.9\text{E-}07\pm0.6$

(Data normalized at 3000 fb⁻¹)

As we can see the values of dose and DPA should not endanger the cables. Let's remind that this configuration is a conservative one, being aside the first quad.

Boron Consumption

$$^{10}_{5}B + n \rightarrow ^{7}_{3}Li + \alpha$$

 ^{10}B slow neutron cross section for this reaction is about 4×10³ barn at room temperature (E_n=0.025 eV) and 1.5×10⁴ barn at 20 K (E_n=0.0017 eV)

$$\frac{N_{\text{int}}}{N_{B_{target}}} = \frac{N_n \sigma n_{10_B} d}{n_B V} = \frac{N_n \sigma n_{10_B} d}{\frac{n_{10_B}}{0.2} \pi \left(\frac{d}{2}\right)^2 l} = \frac{N_n \sigma 4}{\pi dl} 0.2 = \frac{10^{21} 1.5 \cdot 10^{-20} 4}{\pi 6.51000} 0.2 \approx 6 \cdot 10^{-4} = 0.06\%$$

We assume pure bulk of boron, aside the first quad, with an integrated (on 3000 fb⁻¹) neutron fluence of $N_n = 10^{21}$ (all assumed as thermal, and all focused to the cable)

The neutrons impinge perpendicularly to the axis of the cable cylinder.

Powering Scheme and Links Layout

For this configuration the link coming from the surface will arrive just after D1 (at about 80 m from IP) and will run aside the quads

Particles Fluencies (after D1)

integrated over z at 80-84 m from IP

What's Next

- Implement the Links geometry in the LHC Layout in FLUKA
- Simulations for Point 5 It can be guessed a more relaxed

situation as from previous studies on the energy deposition in the low- β coils. IR'07 Frascati 8 November 2007 :

https://care-hhh.web.cern.ch/CAREHHH/IR07/Proceedings/IR07%20Session%205/S5-1-Broggi_IR07_A4.pdf, http://indico.cern.ch/event/19477/session/4/contribution/21/material/slides/2.pdf

Acknowledgment

Thank You for Your attention

• F.Cerutti, LS Esposito (CERN FLUKA Team)

Ancillary Studies (interaction of π^+ and π^- with matter)

• Different way of interaction for $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$

The different behaviour is due to the absorption of the π^- by the nucleus $(\pi^- + p --> n + \gamma)$,

while the π^+ are not absorbed and decay $(\pi^+ --> \mu^+ + \nu_{\mu})$

Layout of SC Link at LHC P1 and P5

Eighteen cables

 Φ ext ~ 65 mm

A. Ballarino, EUCAS 2013, Genova

High Luminosity