

Dealing with Radiation Issues in the FRIB Fragment Separator

Al Zeller

*Work supported by US DOE-SC under Cooperative Agreement DE-SC0000661

Team

- Team members from the FRIB Experimental Division
 - Georg Bollen
 - Tom Borden
 - Dan Cole
 - Shailenda Chouhan
 - Rick Swanson
 - Rich Bennett
 - Marc Hausmann
 - Reg Ronningen
 - Dali Georgobiani
 - Earle Burkhardt
 - Honghai Song
 - Mauricio Portillo

FRIB - Facility for Rare Isotope Beams at Michigan State University

- Rare isotope production via in-flight technique with primary beams up to 400 kW, 200 MeV/u uranium
- Fast, stopped and reaccelerated beam capability
- Upgrade options
 - Energy 400 MeV/u for uranium
 - ISOL production Multi-user capability

World-leading next-generation rare isotope beam facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Beams Will Enable New Discoveries

Zeller, RESMM14, talk 4.2, Slide 4

Experimental Nuclear Physics at MSU

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Conventional Facilities Site Layout

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Construction Progress

- Excavation is ongoing
- Trade personnel installing tie-backs for earth retention system
- Dewatering wells are operating
 - Lowered water table to design level
 » 20 feet below finished floor
 - » As deep as the wells (25 m)

Excavation for linac tunnel

Excavation on west end of site

FRIB Driver Accelerator Layout

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Zeller, RESMM14, talk 4.2, Slide 8

Fragment Separator

Scope

- In-flight separation of rare isotopes with high acceptance and high resolution
 » Leverage rare isotope production at 400 kW beam power
 - » Provide purest-possible rare isotopes beam to maximize science reach

Technical specifications

- High-acceptance preseparator provides first beam purification step, provides defined location(s) for primary beam dump
- 2 additional separation stages to guarantee high beam purity
- Provide future upgrade opportunities for isotope harvesting

Fragment Separator Mechanical Design

All components in high radiation area in vacuum vessels (~200 t)

B Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FR

Target Facility Design [1]

End of beam delivery system

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Zeller, RESMM14, talk 4.2, Slide 11

Target Facility Design Interior Layout

Target Facility Hot Cell

- Design a system that will maintain activated preseparator beam line components located in the hot cell and manage activated waste
- Overall approach
 - Hands on access with beam off and shielding in place
 - Remote operations with shielding removed or beam on
- Hot cell lighting design (LEDs)
- Design effort for remote handling tooling tracks equipment design

Radiation Transport

 Major radiation analysis complete including all needed for construction start and verification of planned hot-cell operation

Heat map of zone close to Target

Hot Cell Dose Rates

Fragment Separator Magnet Design

- Fast initial optimization of yoke mass and field quality allowed mechanical design to proceed
- Full 3D TOSCA model for detailed optimization
 - Detailed flux distribution, forces, quench analysis
- Example: quadrupole FSQ9
 - Field gradient exceeds requirement by 12%
 - Effective length within 5% of goal
 - Integrated strength exceeds requirement

Meshed 3D model of FSQ9

Fragment Separator Magnet Design Magnet Field Quality Example: FSQ9

- 3D model shows pure quadrupole field at 0.1% level
 - Simulated field quality exceeds requirements
 - Similar, but longer magnet FSQ10 has even better field quality
- Beam physics analysis and implementation underway

F	SQ9 FSQ9 (center, R = 12 cm)		FSQ9 (integrated, R = 12 cm)		
Order	Amplitude	Relative Amp.[%]	Amplitude	Relative Amp.[%]	
2	-11432.5	100	-712519	100	
6	-12.2	0.1	-345	0.05	
10	-6.9	0.06	-29	0.004	
14	-4.4	0.04	7.1	-0.001	
18	-3.1	0.03	24	-0.003	

Harmonicnumber

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Warm iron quad (half)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Zeller, RESMM14, talk 4.2, Slide 17

Warm iron quad

Warm Iron HTS Quadrupole Mechanical Design Completed

- Brookhaven National Lab (BNL) has designed a high temperature superconducting warm iron quad
 - Will be used as the first quadrupole after the target
 - MSU provided remote handling
- Cold mass complete
- Cryostat fabrication after cold testing

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Warm Iron FRIB Quadrupole Features

Detailed Magnet Models for Simulations Basis for Reliable Prediction of Radiation Effects

- Power deposition in magnet structures drives the detailed design of magnet components, non-conventional utilities, cooling water loops, cryogenic requirements
- Continuous improvements of target, beam dump, and wedge vacuum vessel models that contain updated magnet components (geometry, dimensions, materials, structures)

Calculations of Radiation Power Deposition

- Power deposition in shielding drives detailed shielding design, such as concrete placement near the vacuum vessels
- Power deposition in magnet yokes and coils drives the detailed design of magnet components, non-conventional utilities, cooling water loops

Calculations of Radiation Power Deposition

- Power deposition drives detailed vacuum vessel and external shielding design
 - Power deposition maps are used as a diagnostic tool to make sure there is no excessive heating

Magnet Thermal Shield Power Deposition Study Supports Cryogenics Detailed Design

- 40 K thermal shield power deposition information also provided to the magnet designers and engineers for improvements towards detailed magnet shield cooling design and shield optimization
- Calculated heat loads become requirements for the cryogenic system
- Power deposition in the front (a) and back (b) parts of Q_D1035 thermal shield

Power deposition in the target vacuum vessel magnet 40 K thermal shields

Beam (at 400 kW)	⁴⁸ Ca, 240 MeV/u	⁴⁸ Ca, 549 MeV/u	
Magnet	Deposited power, W		
Q_D1024	12.7	120	
Q_D1035	200	325	

Magnet Yoke Power Deposition Study Supports Cooling Loop Design

- Cooling will be provided to all magnet yokes in the hot cell
- Cooling may not be required for some magnet yokes
- Detailed heat load information is used to design water cooling loops
- Detailed heat load information also provided to the magnet designers and engineers for improvements towards final magnet designs

Power deposition in the target vacuum vessel magnet yokes

Beam (at 400 kW)	⁴⁸ Ca, 240 MeV/u	⁴⁸ Ca, 549 MeV/u	
Magnet	Deposited power, W		
Q_D1013	60	330	
Q_D1024	0.4	3	
Q_D1035	4	50	
S_D1045	550	7420	

First 3 quads and resistive multipole

This analysis has been published in T40204-CA-000104 "Radiation Energy Deposition in Preseparator Magnets and Lifetime Estimates"; the numbers presented here are updated due to latest model changes reflecting design details

Supports Choice of Coil Technology

- Magnet coils lifetimes are comparable to the facility lifetime in the most conservative case
- Estimates of coil lifetimes are improved due to model changes catching up with design

Rnominal radiation tolerance in various materials

Material	Expected Lifetime in units of Radiation Dose		
HTC	$(1-2) \times 10^8 \text{Gy}$		
NbTi	~5×10 ⁸ Gy		
Nb ₃ Sn	~5×10 ⁸ Gy or more		
Copper	> 10 ⁸ Gy		
Ceramics (Al ₂ O ₃ , MgO, etc)	> 10 ⁹ Gy		
Organics	> 10 ⁶ to 10 ⁸ Gy		

Target vacuum vessel magnet coil dose rate and lifetime estimates

Beam (at 400 kW)	Coil Material	⁴⁸ Ca, 240 MeV/u		⁴⁸ Ca, 549 MeV/u	
Magnet		Dose, MGy/y		Dose, MGy/y	
Q_D1013	а	7		39	
Q_D1024	b	3		28	
Q_D1035	b	2		19	
S_D1045	С	8		72	

Magnet coil materials:

a) YBCO (HTS)

b) NbTi + Cu + Cyanate Ester

c) Stycast + Cu

This analysis has been published in T40204-CA-000104 "Radiation Energy Deposition in Preseparator Magnets and Lifetime Estimates"; the numbers presented here are updated due to latest model changes reflecting design details

Magnet Yoke Power Deposition Study Determines Cooling Loop Design

beam dump

after

- Power deposition is highest after the beam dump
- Cooling is required for most magnet yokes
- Detailed heat load information is used to design water cooling loops
- Detailed heat load information also provided to the magnet designers and engineers for improvements towards detailed magnet designs

Beam (at 400 kW) **O-18** Ca-48 637 Energy, MeV/u 239.5 Magnet Deposited power, kW dump Q_D1013 0.11 0.80 Q D1024 0.30 0.04 beam Q_D1035 0.32 0.04 S D1045 1.60 0.11 before DV_D1064 1.84 0.19 S D1092 3.20 16.2 **DV D1108** 11.8 2.50 Q D1137 7E-3 1.54 Q D1147 2E-3 0.08 Q D1158 0.03 8E-4 Q_D1170 0.02 5E-4

Magnet Design Integration Dipole #1 Beam Interference Resolved

- Original split cryostat for first dipole found not feasible during final design
- Initial single-cryostat design had too small exit window
 - Primary beam (~ 300 kW beam power) would have hit cryostat
 - Settings for very neutron-rich light rare isotopes lead to large deflection of primary beam in first dipole (e.g. ¹⁸O primary beam in ⁸He setting)

Interference resolved

- Increasing dipole exit window opening
 » Primary beam clears magnet hardware
- Added blocker inside of dipole gap
 » Stops intense fragments near primary
 - » Reduces heat load to cryostat
- Special beam optics setting
 - » Controls primary beam envelope in both transverse directions
- Beam physics and radiation transport simulations in good agreement

Fragment Separator Remote-handling Equipment

- Technical design/specification of equipment to be procured complete, procurements released
 - Master slave manipulators
 - » Wall tubes delivered, shield plugs and manipulators delivery in August 2014
 - Shield windows
 - » Window Liners have been delivered, shield plugs and window delivery December 2014
 - Embeds all delivered since March 2014
 - » S-bend utility, crane access, alignment and input enclosure; bottom loading port
 - 20-ton crane specs complete and reviewed
 » Will be bid as part of CF bid package 5
- Remote tooling/handling design follows component design
 - Tooling design for Superconducting (SC) quadrupoles and dipole magnets substantially complete and reviewed
- Cold-test facility design nearly complete
 - Making use of master slave manipulators for design and procedure validation

Installation Plan Established

- Vacuum vessel installation with Conventional Facilities Division support prior to Beneficial Occupancy Date (BOD)
- Component installation in vacuum vessel using remote handling procedures
 - Magnets in hot cell vacuum vessels
 - » Initial installation August 2017 (remote handling equipment ready)
 - » Remote handling procedures validation August 2017 February 2019
 - » Utility hookup and testing in February/March 2019
 - Target, beam dump, etc. will also be installed using remote handling equipment

Vertical Magnets

Not in hot cell

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

, Slide Zeller, RESMM14, talk 4.2 31

Vertical Triplets

First triplet outside of the hot cell

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Schedule

- CD-3b review next month
- Begin technical construction summer-fall 2014
- Civil construction underway begin to pour concrete in June
- Manage to early completion Oct 2020

Summary

- Preliminary design that supports initial operations
- Integrated into complete target facility
- Transition to HTS coils in future upgrades

