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Atomic nucleus = challenging many-body system! 

Introduction 

nucleusatom Nucleon
(Quarks and gluons)

At the frontiers between microscopic & macroscopic worlds

Neutron
stars

Figure: TRIUMF

 Exhibits generic properties of 
 many-body systems:

shell structure
particle-decay and radiation
emergent collective phenomena
superfluidity

 Also has specific features and difficulties:

Two types of particles (neutrons & protons) 
which are not structureless

NN interaction unknown, existence of 
many-body forces... 



  

Nuclear Field theory 
        – Particle-Vibration coupling

Introduction – Theoretical methods

...

Relativistic mean-field 
                            + superfluidity

collective vibrations
(phonons) ~ few MeV

nucleons
S

n
 ~ 10 MeV

Mesons
m

π,σ,ω,ρ
~140-800 MeV

nucleons & phonons

RRPA

...
More correlations More correlations

Relativistic Nuclear Field Theory: foundations 

σ ω ρ

Quantum 
     Hadrodynamics (QHD)

Connects the scales from 
heavy mesons to the complex

dynamics of heavy nuclei

(1p-1h)

(2p-2h)

Walecka/Serot

Bogoliubov/BCS
/Gorkov

Ring

Bohr-Mottelson

Argentina-Copenhagen
-Milano...

Ring

self-consistent
extensions

of the
Relativistic 
Mean-Field

via
Green function

techniques

successive 
corrections 

in the single-
particle motion 

and 
effective

interaction
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From QHD to relativistic mean field

(Mesons)

(Nucleons)

When both nucleons and mesons are quantized the equations of motion:

are very complicated to solve...

Effective QHD Lagrangian: 



  

From QHD to relativistic mean field

Possible approximation: Mean-field approximation I.e. treat the bosons classically  

 ⇉ the pion does not contribute in the ground state (would break parity) 

→ Static nucleonic self-energy:

(Hartree)

(Mesons)

(Nucleons)

EoM describe independent nucleons in classical 
meson fields:

→ One-nucleon motion (propagator):

free 
propagator

RMF 
propagator



  

From QHD to relativistic mean field 

(for quasi-nucleons)

• RHB self-energy: 

→ RHB quasiparticle propagator: 

pairing field

+ Superfluid pairing correlations in open-shell nuclei: 

p p
n n

→ Introduce quasiparticles = superpositions of particles and holes (BCS/Bogoliubov)

(for bosons)

Quasiparticles and
quasiholes

time

Hartree

Gorkov-GF



  

Fermi sea

Dirac sea
 (empty)

Mean-field ground-state
      =  independent (quasi)particles
      = 0-th order approximation

Going beyond mean-field: quasiparticles coupled to vibrations
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Fermi sea

Dirac sea
 (empty)

Mean-field ground-state
      =  independent (quasi)particles
      = 0-th order approximation

Going beyond mean-field: quasiparticles coupled to vibrations

correlations

Beyond mean-field
Collective vibration

(phonon)



  

Going beyond mean-field: Quasiparticles coupled to vibrations

dynamic

= +
vibration (phonon)

 Quasiparticle-Vibration Coupling (QVC) in the nucleonic self-energy:

→ Allows a non perturbative treatment of the NN interaction

→ New order parameter = QVC vertex  

=      serie of 
p-h excitations

static



  

→ quasi-particle propagator:

→ fragmentation of single (quasi)particle states:

Going beyond mean-field: Quasiparticles coupled to vibrations

Introduces new poles

No more well defined (quasi)nucleons
on single (quasi)particle shells 

→ fractional occupation numbers

Mean-field

QVC



  

Excited states: nuclear response theory 

 Response of the nucleus to an external field:  external 
field F

Response function (2-body propagator) 
solution of the Bethe-Salpeter equation (BSE):

effective interaction
induced by 

the nuclear medium

Discrete
states 

Giant
Resonance

→ Transition strength:



  

Excited states: nuclear response theory 

 Response of the nucleus to an external field:  external 
field F

Response function (2-body propagator) 
solution of the Bethe-Salpeter equation (BSE):

effective interaction
induced by 

the nuclear medium

Discrete
states 

Giant
Resonance

→ Transition strength:

Energy-dependent 
phonon exchange

Static meson 
exchange
+ pairing



  

Excited states: nuclear response theory 

Quasiparticle-Vibration Coupling amplitude:



  

Excited states: nuclear response theory 

Quasiparticle-Vibration Coupling amplitude:

Relativistic Quasiparticle Random 
Phase Approximation (RQRPA)

E
k

0

Single-particle states 

Many-body states

1(q)p-1(q)h 
configurations 



  

Excited states: nuclear response theory 

Quasiparticle-Vibration Coupling amplitude:

Relativistic Quasiparticle Random 
Phase Approximation (RQRPA)

Many-body states

1(q)p-1(q)h ⊗ 1 phonon
configurations 

E
k

0

Single-particle states 

+ QVC

✔ spreading width



  

Problem: Integration over all intermediate times ⇒ complicated BSE (integrations do not
separate), appearance of NpNh configurations:

R , ...

time
3p3h

NpNh

Solution: Time-Blocking Approximation  [V.I. Tselyaev, Yad. Fiz. 50,1252 (1989) ] 

1

2 4

3

1(q)p-1(q)h ⊗ 1 phonon i.e. 2(q)p2(q)h
→ spreading

→ allowed configurations: → blocked configurations: 3(q)p-3(q)h, 4(q)p4(q)h...

R
G-1

… but can be included in a next step
(under development)

Excited states: nuclear response theory 
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Nuclear vibrational motion and their applications

GTRIAR
ΔL=0



  

Nuclear vibrational motion and their applications

GTRIAR
ΔL=0

np

 Neutron skin thickness
(IVGDR,IVSGDR...)

 Channels of the nuclear interaction

rp-process

Z

N

r-process

 Astrophysics: (IAR,GTR,IVGDR...)

(IVGDR,GTR)



  

Relativistic mean-field
with pairing

( NL3 &
monopole pairing force)

Solve BSE with RQTBA
for the response function

with given quantum numbers 

Strength distribution:

external field

Numerical scheme

RQRPA
⇒ phonon spectrum and

their coupling vertices        
  

Phonons selected according 
to their T, Jπ  and energy

Typically: neutral (T=0) phonons with 
Jπ =2+ → 6+, E

max
=20-30 MeV  

Inputs: 
Meson parameters (<10)

+ pairing force (1-2)
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A few results in the ph neutral (ΔT
Z
=0) channel

Giant and pygmy resonances

Test case: E1 (IVGDR)

pygmypygmy

Neutron-rich nuclei:

Pygmy Dipole Resonance (PDR):
Oscillation of the neutron skin against the core 

n p

np

Litvinova, Ring, and Tselyaev, PRC 78, 014312 (2008)
Adrich et al., PRL 95, 132501 (2005)
Litvinova, Ring, Tselyaev, Langanke, PRC  79, 054312 (2009)



  

A few results in the ph neutral (ΔT
Z
=0) channel

E. Litvinova et al., Nucl. Phys. A 823, 26 (2009).

Radiative neutron capture in the 
Hauser-Feshbach model:

standard Lorentzians vs microscopic structure 

(n,γ) stellar reaction rates

Microscopic structure is important, especially 
when PDR is at the neutron threshold

Factor 3.7
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p p'

n'n

p p'

n'n

p p'

n'n

p

n

isovector interaction Landau-Migdal
contact term

free-space
coupling constant

quasi-particle

Response theory for isospin-transfer modes

g’ =0.6

Response in the ph proton-neutron channel:



  

Gamow-Teller transitions in Nickel isotopes (Ni → Cu)

(Smearing Δ= 200 keV)

QPVC brings fragmentation 
of the strength 

and distribution over
 a larger energy range

RQRPA
+ QVC

C. R. and E. Litvinova EPJA 52, 205 (2016).



  

    Low-energy GT strength and β-decay half-lives

 Half-lives and low-energy strength: 

→ big improvement due to QVC!

● 68Ni and 70Ni : appearance of strength in the
Q

β
 window due to QVC → finite lifetime

● 78Ni: more strength with RQRPA but located
at higher energies → smaller lifetime with
QVC due to phase space factor

C.R. and E. Litvinova EPJA 52, 205 (2016).

exp data from nndc.bnl.gov

68Ni 70Ni 78Ni

With g
a
=1

Ni

Leptonic phase-space
factor



  

          

At present with RNFT+TBA:
 

2(q)p-2(q)h configurations 
in an energy window from 30 MeV up to ~100 MeV in light or doubly magic nuclei 

Gamow-Teller transitions and the “quenching” problem

n
pn p

 “Quenching problem”: 

The observed GT strength (~up to the GR region) in nuclei is ~30-40% less than
the model independent Ikeda sum rule: S_ - S

+
 =3(N-Z)

⇒ some strength is pushed at high energies → possible mechanisms?

Coupling of 1p1h to Δ baryon (believed to be small)

Coupling of 1p1h to higher-order configurations such as 2p2h, 3p3h…
(Believed to be the most important)

⇒ important to introduce complex configurations in large model spaces



  

EXP: K. Yako et al., PRL 103, 012503 (2009)

Gamow-Teller transitions and the “quenching” problem

[N. Paar et al.,
 PRC 69, 054303]

+ transitions from
the Fermi sea 

to the Dirac sea
(~8%) 

Up to 30 MeV: ~91%
 (vs 98% in RQRPA)  

of the total GT_  strength

→ RQRPA strength
naturally

“quenched” due 
to complex

configurations 

 But not enough...
(exp: 71%)



  

Gamow-Teller transitions and the “quenching” problem

n p

n p

IVSM?

GT strength only:

0-50 MeV:

0-32 MeV:

IVSM?



  

Gamow-Teller transitions and the “quenching” problem

n p

n p

Schematic mean-field - no pairing:

IVSM?

IVSM?

Pauli-blocked

GT strength only:

0-50 MeV:

0-32 MeV:



  

Gamow-Teller transitions and the “quenching” problem

n p

n p

GT strength in β+ channel caused by ground-
state correlations (pairing here). But need

further fragmentation → GSC induced by QVC ?

Schematic mean-field with pairing:

IVSM?

IVSM?

GT strength only:

0-50 MeV:

0-32 MeV:



  

...Ongoing developments in the RNFT

Inclusion of higher-order Np-Nh configurations in the response

→ important for an accurate description of fine details of the transition strength

Ground-state correlations induced by QVC = backward going diagrams

→ important for e.g. (n,p) strength in neutron-rich nuclei / (p,n) strength in proton-rich nuclei

…

RNFT +TBA:

Extension: 

E. Litvinova, Phys. Rev. C 91, 034332 (2015)
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Conclusion, perspectives

Inclusion of higher-order configurations and ground-state correlations

Application to double-charge exchange and double-beta decay (2νββ and 0νββ)

Together with RNFT in the neutral channel, this framework provides a high-quality and consistent
description of both phases of the r-process nucleosynthesis, (n,γ) and β-decay ⇒ implementation in
astrophysical modeling

Long-term goals: inclusion of the Fock term, start from bare interaction…

Other ongoing developments at WMU: coupling to continuum and extension to finite temperature
(Ph.D. of H. Wibowo), description of neutral pairing vibrations (Ph.D of I. Egorova)

→ Conclusions:

→ Perspectives:

The RNFT is a powerful framework for the microscopic description of mid-mass to heavy nuclei,
which allows the account for complex configurations of nucleons in a large model space.

It has been quite successful in the description of neutral excitations.

 It appears promising in the spin-isospin channel (description of both the low-energy strength and
overall distribution to higher excitation energy).

However, in its present formulation (time-blocking approximation) it is often not sufficient.



  

This work is supported by US-NSF Grants 
PHY-1404343 and PHY-1204486

Thank you!



  

Dominant level:
(coupling to T=0 phonons w/                                   ) 

E. Litvinova, PRC 85, 021303(R) (2012)

→ quasi-particle propagator:

Mean-field

→ fragmentation of single 
                        (quasi)particle states:

QVC

Next step beyond mean-field: Quasiparticles coupled to vibrations

Introduces new poles

Dominant level

“      “

“     ““     “

 model dependence... !



  

Gamow-Teller resonance in Nickel

Effect of pairing correlations on the strength distribution:

Pairing can bring
fragmentation at the
QRPA level (Landau

damping)

QPVC brings
spreading effects



  

Convergence of the strength according to the phonon spectrum (neutral phonons only):

68Ni

C. Robin and E. Litvinova EPJA 52, 205 (2016).

Gamow-Teller transitions in Nickel isotopes (Ni → Cu)



  

Low-energy GT strength and beta-decay half-lives

Problem with QRPA description: the beta-decay half-lives are systematically overestimated.

→ issue overcome by considering T=0 pn-pairing

But this type of pairing is not well understood
(no deuteron condensate → T=0 pairing is dynamic (?)…)
And not well constrained ...

→ often treated phenomenologically with an additional static pn residual interaction in the 
particle-particle channel. 

p n

T=0, S=1

→ Example in 68Ni:

⇒ Lack of
        predictive power



  

Low-energy GT strength and beta-decay half-lives

Problem with QRPA description: the beta-decay half-lives are systematically overestimated.

→ issue overcome by considering T=0 pn-pairing

But this type of pairing is not well understood
(no deuteron condensate → T=0 pairing is dynamic (?)…)
And not well constrained ...

→ often treated phenomenologically with an additional static pn residual interaction in the 
particle-particle channel. 

p n

T=0, S=1

→ QVC can provide an underlying mechanism for dynamical proton-neutron pairing

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

→ QVC generates a pn effective interaction in the particle-hole and particle-particle channels.

=

Goal: evaluate the effect of QVC on the half-lives and provide a possible microscopic 
mechanism for pn-pairing:

Quasiparticle = superposition of particles and holes:



  

Gamow-Teller resonance in Nickel



  

Gamow-Teller resonance in Nickel



  

Gamow-Teller transitions in Nickel isotopes (Ni → Cu)

 Effect of phonon-exchange interaction vs self-energy insertions:

only

68Ni

78Ni



  

Gamow-Teller transitions and the “quenching” problem

78Ni

Up to the GR region: ~81%
 (vs 97% in RQRPA)  

of the total GT_  strength

→ RQRPA strength
naturally

“quenched” due 
to complex

configurations 

[N. Paar et al.,
 PRC 69, 054303]

+ transitions from
the Fermi sea 

to the Dirac sea
(~10%) 

Neutral
phonons 
only



  

New-developments: coupling to charge-exchange phonons

Effect on the nuclear response in 78Ni: 
(coupling to                ):

Existence of low-energy isospin-flip modes which can couple to single-nucleon degrees of
freedom → additional terms in the effective interaction:  

(No extra phonon-exchange term
because of charge conservation)

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

p p'

n'n

n’’

p’’n’’

p’’

Additional decrease
of the half-life

EXP (Hosmer et al. PRL 94, 112501)



  

EXP: K. Yako et al, PRL 103, 012503 (2009)

Gamow-Teller transitions and the “quenching” problem

with QVC:
● more detailed description of the transition

strength due to 2p-2h configurations 
● “quenching” of the RPA strength in the 

experimental energy window due to
fragmentation and redistribution

               But not enough...

At 30 MeV:
● RQRPA: quasi-saturated (98%) 
● RQTBA: 91%
● Exp: ~71%

100% ?



  

Other GT strengths and beta-decay half-lives



  

Phonons 2+ → 6+ up to 10 MeV Problem when hits a pole!!!

Gamow-Teller in 78Ni



  

Gamow-Teller transitions and the “quenching” problem

n p

n p

IVSM?



  

Response in proton-neutron particle-particle (deuteron transfer) channel:
quest for deuteron condensate and pn-pairing

Ground state of 58Cu (odd-odd)

56Ni→58Cu 

p n

T=0, S=1

p n

T=0, S=1



  

A few results in the ph neutral (ΔT
Z
=0) channel

quasi-particle

Response in the neutral ph channel:



  

The role of the low-lying dipole strength (pygmy dipole resonance)
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