

### Current Status of WIMP Searches



- Liquid xenon detectors currently provide the best sensitivity to spin-independent WIMP scattering
- Tension with the DAMA/Nal and DAMA/LIBRA results: no other experiment have been able to confirm the dark matter signal claim
- More stringent exclusion limits cannot answer this question

### Results from DAMA/Nal and DAMA/LIBRA

 ~1 cpd/kg/keV background above 2 keV

Modulation between
 2-6 keV over 14 annual cycles

 Dark matter modulation with 9.3 σ



# Global Nal(TI) Efforts



### OSINE-100

- Joint effort between DM-Ice and KIMS collaborations
- 8 crystals with 106 kg in total, ~2000 L of liquid scintillator veto
- Located at Yangyang Underground Laboratory (Y2L), South Korea, with ~700 m rock (~2100 m.w.e.) overburden
- Physics run started September 2016

































## COSINE-100 Shielding Structure



### COSINE-100 Construction Timeline

Dec. 2015 Jan. 2016 Feb. 2016









Mar. 2016 Apr. 2016









May. 2016 Jun. 2016 Sep. 2016









# Crystal Installation



## Environmental Control/Monitoring



- Monitoring stability of temperature, humidity, current/voltage, etc.
- < 1°C temperature fluctuation inside the shielding structure



Current/Voltage

## COSINE-100 Nal(TI) Crystals

### Preliminary

|           | _         |               |                       |                        |                         |                            |                       |
|-----------|-----------|---------------|-----------------------|------------------------|-------------------------|----------------------------|-----------------------|
|           | Mass (kg) | Powder Type   | <sup>40</sup> K (ppb) | <sup>238</sup> U (ppt) | <sup>232</sup> Th (ppt) | <sup>210</sup> Po (mBq/kg) | Light Yield (npe/keV) |
| Crystal 1 | 8.26      | Powder B      | $34.74 \pm 4.74$      | < 0.02                 | $1.31 \pm 0.35$         | $3.20 \pm 0.04$            | $14.67 \pm 0.62$      |
| Crystal 2 | 9.15      | Powder C      | $60.64 \pm 4.64$      | < 0.12                 | < 0.63                  | $2.06 \pm 0.03$            | $14.56 \pm 0.54$      |
| Crystal 3 | 9.16      | WIMPScint-II  | $34.34 \pm 3.10$      | < 0.04                 | $0.44 \pm 0.19$         | $0.76 \pm 0.02$            | $15.75 \pm 0.76$      |
| Crystal 4 | 18.01     | WIMPScint-II  | $33.32 \pm 3.50$      |                        | < 0.3                   | $0.74 \pm 0.02$            | $14.69 \pm 0.46$      |
| Crystal 5 | 18.28     | Powder C      | $82.33 \pm 5.49$      |                        | $2.35 \pm 0.31$         | $2.06 \pm 0.03$            | $6.26 \pm 0.34$       |
| Crystal 6 | 12.5      | WIMPScint-III | $16.79 \pm 2.46$      | < 0.018                | $0.56 \pm 0.19$         | $1.52 \pm 0.02$            | $14.52 \pm 0.51$      |
| Crystal 7 | 12.5      | WIMPScint-III | $18.69 \pm 2.79$      |                        | < 0.6                   | $1.54 \pm 0.02$            | $14.41 \pm 0.50$      |
| Crystal 8 | 18.28     | Powder C      | $54.25 \pm 3.82$      |                        | < 0.9                   | $2.05 \pm 0.02$            | $3.27 \pm 0.20$       |
| DAMA      |           |               | <20                   | 0.7 - 10               | 0.5 - 7.5               | < 0.5                      | 5.5 - 7.5             |

- 8 crystals with a total mass of ~106 kg
- Preliminary background values estimated both at R&D and COSINE-100 setups
- Average light yield ~15 p.e./keV

## Calibration/Light yield calculation





- <sup>241</sup>Am source (60 keV gamma) used to calibrate PMTs
- Gain is matched to have 60 keV peak at the mid-range of FADC dynamic range
- Single Photoelectron spectrum were fitted to calculate PMT light yield

## Event Selection: Charge Ratio



 Looking at charge ratio between rising edge and falling edge of a pulse gives good noise separation power

## Event Selection: Asymmetry and Charge/Peak



- Additional noise reduction cuts have been developed:
  - Charge asymmetry between 2 PMTs in each crystal
  - Charge/peak: Average charge per SPE
- New development of event selection criteria based on multivariate analysis on going

## Crystal-LS Coincidence Events



- <sup>40</sup>K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal crystal
- Tagging 1460 keV events with LS enables to veto 3 keV background events

## COSINE-100 Muon Background



- Muon flux at COSINE-100 is ~3.98 x 10<sup>-7</sup>/cm<sup>2</sup>/s (344.29 muons/m<sup>2</sup>/day)
- Rate has been consistent throughout the physics run
- Muon selection used to veto muon-induced crystal events

## Low Energy Spectrum





- 10 days of data, preliminary set of event selection applied
- Cosmogenic  $^{125}I$  ( $T_{1/2} = 59$  days) peaks remain in newer crystals
- Depending on crystal, background level 2 to 4 dru in the region of interest
- There is still room for improvement!

## COSINE-100 Nal Crystal Simulation

- Work in progress,
  Geant4 framework
- Some discrepancy still remains in low energy region
- Bulk/Surface
   <sup>210</sup>Pb is suspected
   to be the dominant
   background in the
   ROI, followed by
   cosmogenic <sup>3</sup>H





### Stable Operation and Data Accumulation

 Stable crystal trigger rates throughout the physics run



- Accumulated more than
  6 months of data
- Downtime mostly due to calibration campaign



### COSINE-100 Accumulated Data



## COSINE-100 Projected Sensitivity



- ~4 cpd/kg/keV flat background is assumed
- ~2 years of data with 1 keV analysis threshold will give comparable sensitivity to DAMA's 90% C.L. allowed region

### Conclusions

- WIMP interpretation of DAMA signal is in tension with other experiments: Independent NaI(TI) experiments are needed
- COSINE-100 is running with 106 kg of Nal(TI) crystals, with lower backgrounds and better technology than its predecessor experiments; physics run started on September 2016
- Initial performance of COSINE-100 is promising, expect to have DAMA-comparable sensitivity in ~2 years
- Continued R&D for higher purity crystals
- Very exciting time for Nal dark matter search...stay tuned!

Backups

## COSINE-100 Crystal-PMT Assembly



- OFE Cu-encapsulated Nal crystal is attached with two 3-inch PMTs
- PMT: R12669 from Hamamatsu, 35% Quantum Efficiency at 420 nm
- Outer surface of crystal and PMT cap is wrapped with Vikuiti reflective films

## Crystal PMT Waveforms



- The same events read in two channels: Anode and Dynode
  - Anode signal with waveform sensitivity at single-photon level: Primary channel for dark matter search
  - **Dynode** signal for high energy events: helps in understanding better the internal backgrounds in the crystals

### Resolution @ 60 keV

### Crystal 3 Anode Charge Sum, 1\_5 µs Window



### Am-241 ADC sum (Anode) Am-241 ADC sum (Dynode)

Crystal 3 Dynode Charge Sum, 1\_5 µs Window





### LS for COSINE-100

Linear alkylbenzene (LAB): Good optical/radioactive properties 2,5-Diphenyloxazole (PPO): fluor, scintillator/wavelength shifter



first day

20 days later

Rn222

daughters

## Pulse Shape Discrimination for Alpha



- Pulse Shape Discrimination technique works well for alpha separation
- Using charge-weighted mean time
- With separated alpha events, estimation of <sup>210</sup>Po background can be performed
  - 0.5~3 mBq/kg for COSINE-100 crystals

## Examples of Signal Events (Anode Channel)



## Low Energy Spectrum



- 10 days of data, preliminary set of event selection applied
- Depending on crystal, background level 2 to 4 dru in the region of interest
- Cosmogenic peaks remain in certain crystals
- There are still room for improvements

## COSINE-100 Low Energy Spectrum (ROI)



Preliminary





## COSINE-100 High Energy Spectrum

### Preliminary



- Gamma spectrum shows pronounce background peaks including 1460 keV from <sup>40</sup>K
- Dynamic range for high energy signals is > 5 MeV

## COSINE-100 Nal Crystal Simulation @ R&D Setup

Adhikari et al., arxiv:1703.01982





- Work in progress, Geant4 framework
- Using Nal energy spectrum in R&D setup for the first step
- Surface <sup>210</sup>Pb is suspected to be the dominant background in the ROI, followed by <sup>40</sup>K within crystal

# Average charge/SPE cut



### Crystal growing in Korea



Czochralski Furnace

### **Under development**

Bridgman Furnace



1<sup>st</sup> crystal (Sapphire) grown ~ 30kg!

Kyropoulos Furnace





### **Bridgman**



- A small Nal was grown in Korea
- We will try to grow larger crystals
  - A special Kyropoulos machine is under consideration
- Whole procedure can be done by ourselves
  - Speed up the R&D of background reduction

H. Lee, IDM2016

### ANAIS



- 112.5 Kg in a 3 x 3 array configuration
  - Crystals grown by Alpha Spectra
- Located at Canfranc Lab, Spain
- 37 kg currently installed in R&D setup, secured 5 crystals so far (4 more coming)
- Possible combined-analysis with COSINE in future





# ANAIS: Background



### P. Vilar, RENATA 2016

|    | <sup>40</sup> K          | <sup>238</sup> U | <sup>210</sup> Pb | <sup>232</sup> Th                                                                                    |
|----|--------------------------|------------------|-------------------|------------------------------------------------------------------------------------------------------|
| D0 | 1.4 mBq/kg<br>(45 ppb K) | 9 μBq/kg         | 3.15 mBq/kg       | 5 $\mu$ Bq/kg ( $^{220}$ Rn- $^{216}$ Po)<br>3 $\mu$ Bq/kg ( $^{212}$ Bi-Po)                         |
| D1 | 1.1 mBq/kg<br>(34 ppb K) | 9 μBq/kg         | 3.15 mBq/kg       | 4 μBq/kg ( <sup>220</sup> Rn- <sup>216</sup> Po)                                                     |
| D2 | 1.1 mBq/kg<br>(34 ppb K) | 2.7<br>μBq/kg    | 0.70 mBq/kg       | $pprox$ 1 $\mu$ Bq/kg ( $^{220}$ Rn- $^{216}$ Po)<br>$pprox$ 1 $\mu$ Bq/kg ( $^{212}$ Bi-Po)         |
| D3 | 0.6 mBq/kg<br>(19 ppb K) | ~4 μBq/kg        | ~1.8 mBq/kg       | $\approx$ 0,6 $\mu$ Bq/kg ( $^{220}$ Rn- $^{216}$ Po)<br>$\approx$ 0,6 $\mu$ Bq/kg ( $^{212}$ Bi-Po) |



## ANAIS: Plan and Sensitivity





P. Vilar, RENATA 2016

- Expected to run by March 2017
- Sensitivity comparable to DAMA signal with 5 years of running
  - 1-6 keV region
  - D2 background level





F. Forborg, IDM2016

- ~50 kg of ultra pure crystals with liquid scintillator veto
  - SAFHC-Hitech and Sigma-Aldrich
- Plan to install both at LNGS (Italy) and SUPL (Australia)
- Proof-of-Principle: 2 kg of crystal grown

## SABRE: Background Expectation



- Focusing on lowering K background from a powder level
- With new Nal power purification, < 10 ppb was achieved
  - Not yet instrumented, only ICPMS assay
  - No <sup>210</sup>Pb measurement yet
- Simulated background shows ~0.13 cpd/kg/keV in 2-6 keV region

F. Forborg, IDM2016

| <sup>39</sup> K [ppb] | Seastar  | PNNL          | DAMA |
|-----------------------|----------|---------------|------|
| A                     | 9±1      | $10.0\pm0.7$  |      |
| В                     | $7\pm1$  | $9.1\pm0.3$   |      |
| D                     | $11\pm1$ | $9.7\pm0.4$   |      |
| E                     | $9\pm1$  | $9.8 \pm 0.4$ |      |
| Average               | 9        | 9.6           | 13   |



## SABRE: Plan and Sensitivity



- R&D setup for 1-2 crystals nearly completed
- Full detectors construction at LNGS and SUPL start in 2017
- Goal
  - 50 kg crystals with 3 years of running
  - ROI: 2-6 keV
  - Expect to have 0.13 cpd/ kg/keV total background in ROI



F. Forborg, IDM2016