Current Status of WIMP Searches - Liquid xenon detectors currently provide the best sensitivity to spin-independent WIMP scattering - Tension with the DAMA/Nal and DAMA/LIBRA results: no other experiment have been able to confirm the dark matter signal claim - More stringent exclusion limits cannot answer this question ### Results from DAMA/Nal and DAMA/LIBRA ~1 cpd/kg/keV background above 2 keV Modulation between 2-6 keV over 14 annual cycles Dark matter modulation with 9.3 σ # Global Nal(TI) Efforts ### OSINE-100 - Joint effort between DM-Ice and KIMS collaborations - 8 crystals with 106 kg in total, ~2000 L of liquid scintillator veto - Located at Yangyang Underground Laboratory (Y2L), South Korea, with ~700 m rock (~2100 m.w.e.) overburden - Physics run started September 2016 ## COSINE-100 Shielding Structure ### COSINE-100 Construction Timeline Dec. 2015 Jan. 2016 Feb. 2016 Mar. 2016 Apr. 2016 May. 2016 Jun. 2016 Sep. 2016 # Crystal Installation ## Environmental Control/Monitoring - Monitoring stability of temperature, humidity, current/voltage, etc. - < 1°C temperature fluctuation inside the shielding structure Current/Voltage ## COSINE-100 Nal(TI) Crystals ### Preliminary | | _ | | | | | | | |-----------|-----------|---------------|-----------------------|------------------------|-------------------------|----------------------------|-----------------------| | | Mass (kg) | Powder Type | ⁴⁰ K (ppb) | ²³⁸ U (ppt) | ²³² Th (ppt) | ²¹⁰ Po (mBq/kg) | Light Yield (npe/keV) | | Crystal 1 | 8.26 | Powder B | 34.74 ± 4.74 | < 0.02 | 1.31 ± 0.35 | 3.20 ± 0.04 | 14.67 ± 0.62 | | Crystal 2 | 9.15 | Powder C | 60.64 ± 4.64 | < 0.12 | < 0.63 | 2.06 ± 0.03 | 14.56 ± 0.54 | | Crystal 3 | 9.16 | WIMPScint-II | 34.34 ± 3.10 | < 0.04 | 0.44 ± 0.19 | 0.76 ± 0.02 | 15.75 ± 0.76 | | Crystal 4 | 18.01 | WIMPScint-II | 33.32 ± 3.50 | | < 0.3 | 0.74 ± 0.02 | 14.69 ± 0.46 | | Crystal 5 | 18.28 | Powder C | 82.33 ± 5.49 | | 2.35 ± 0.31 | 2.06 ± 0.03 | 6.26 ± 0.34 | | Crystal 6 | 12.5 | WIMPScint-III | 16.79 ± 2.46 | < 0.018 | 0.56 ± 0.19 | 1.52 ± 0.02 | 14.52 ± 0.51 | | Crystal 7 | 12.5 | WIMPScint-III | 18.69 ± 2.79 | | < 0.6 | 1.54 ± 0.02 | 14.41 ± 0.50 | | Crystal 8 | 18.28 | Powder C | 54.25 ± 3.82 | | < 0.9 | 2.05 ± 0.02 | 3.27 ± 0.20 | | DAMA | | | <20 | 0.7 - 10 | 0.5 - 7.5 | < 0.5 | 5.5 - 7.5 | - 8 crystals with a total mass of ~106 kg - Preliminary background values estimated both at R&D and COSINE-100 setups - Average light yield ~15 p.e./keV ## Calibration/Light yield calculation - ²⁴¹Am source (60 keV gamma) used to calibrate PMTs - Gain is matched to have 60 keV peak at the mid-range of FADC dynamic range - Single Photoelectron spectrum were fitted to calculate PMT light yield ## Event Selection: Charge Ratio Looking at charge ratio between rising edge and falling edge of a pulse gives good noise separation power ## Event Selection: Asymmetry and Charge/Peak - Additional noise reduction cuts have been developed: - Charge asymmetry between 2 PMTs in each crystal - Charge/peak: Average charge per SPE - New development of event selection criteria based on multivariate analysis on going ## Crystal-LS Coincidence Events - ⁴⁰K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal crystal - Tagging 1460 keV events with LS enables to veto 3 keV background events ## COSINE-100 Muon Background - Muon flux at COSINE-100 is ~3.98 x 10⁻⁷/cm²/s (344.29 muons/m²/day) - Rate has been consistent throughout the physics run - Muon selection used to veto muon-induced crystal events ## Low Energy Spectrum - 10 days of data, preliminary set of event selection applied - Cosmogenic ^{125}I ($T_{1/2} = 59$ days) peaks remain in newer crystals - Depending on crystal, background level 2 to 4 dru in the region of interest - There is still room for improvement! ## COSINE-100 Nal Crystal Simulation - Work in progress, Geant4 framework - Some discrepancy still remains in low energy region - Bulk/Surface ²¹⁰Pb is suspected to be the dominant background in the ROI, followed by cosmogenic ³H ### Stable Operation and Data Accumulation Stable crystal trigger rates throughout the physics run - Accumulated more than 6 months of data - Downtime mostly due to calibration campaign ### COSINE-100 Accumulated Data ## COSINE-100 Projected Sensitivity - ~4 cpd/kg/keV flat background is assumed - ~2 years of data with 1 keV analysis threshold will give comparable sensitivity to DAMA's 90% C.L. allowed region ### Conclusions - WIMP interpretation of DAMA signal is in tension with other experiments: Independent NaI(TI) experiments are needed - COSINE-100 is running with 106 kg of Nal(TI) crystals, with lower backgrounds and better technology than its predecessor experiments; physics run started on September 2016 - Initial performance of COSINE-100 is promising, expect to have DAMA-comparable sensitivity in ~2 years - Continued R&D for higher purity crystals - Very exciting time for Nal dark matter search...stay tuned! Backups ## COSINE-100 Crystal-PMT Assembly - OFE Cu-encapsulated Nal crystal is attached with two 3-inch PMTs - PMT: R12669 from Hamamatsu, 35% Quantum Efficiency at 420 nm - Outer surface of crystal and PMT cap is wrapped with Vikuiti reflective films ## Crystal PMT Waveforms - The same events read in two channels: Anode and Dynode - Anode signal with waveform sensitivity at single-photon level: Primary channel for dark matter search - **Dynode** signal for high energy events: helps in understanding better the internal backgrounds in the crystals ### Resolution @ 60 keV ### Crystal 3 Anode Charge Sum, 1_5 µs Window ### Am-241 ADC sum (Anode) Am-241 ADC sum (Dynode) Crystal 3 Dynode Charge Sum, 1_5 µs Window ### LS for COSINE-100 Linear alkylbenzene (LAB): Good optical/radioactive properties 2,5-Diphenyloxazole (PPO): fluor, scintillator/wavelength shifter first day 20 days later Rn222 daughters ## Pulse Shape Discrimination for Alpha - Pulse Shape Discrimination technique works well for alpha separation - Using charge-weighted mean time - With separated alpha events, estimation of ²¹⁰Po background can be performed - 0.5~3 mBq/kg for COSINE-100 crystals ## Examples of Signal Events (Anode Channel) ## Low Energy Spectrum - 10 days of data, preliminary set of event selection applied - Depending on crystal, background level 2 to 4 dru in the region of interest - Cosmogenic peaks remain in certain crystals - There are still room for improvements ## COSINE-100 Low Energy Spectrum (ROI) Preliminary ## COSINE-100 High Energy Spectrum ### Preliminary - Gamma spectrum shows pronounce background peaks including 1460 keV from ⁴⁰K - Dynamic range for high energy signals is > 5 MeV ## COSINE-100 Nal Crystal Simulation @ R&D Setup Adhikari et al., arxiv:1703.01982 - Work in progress, Geant4 framework - Using Nal energy spectrum in R&D setup for the first step - Surface ²¹⁰Pb is suspected to be the dominant background in the ROI, followed by ⁴⁰K within crystal # Average charge/SPE cut ### Crystal growing in Korea Czochralski Furnace ### **Under development** Bridgman Furnace 1st crystal (Sapphire) grown ~ 30kg! Kyropoulos Furnace ### **Bridgman** - A small Nal was grown in Korea - We will try to grow larger crystals - A special Kyropoulos machine is under consideration - Whole procedure can be done by ourselves - Speed up the R&D of background reduction H. Lee, IDM2016 ### ANAIS - 112.5 Kg in a 3 x 3 array configuration - Crystals grown by Alpha Spectra - Located at Canfranc Lab, Spain - 37 kg currently installed in R&D setup, secured 5 crystals so far (4 more coming) - Possible combined-analysis with COSINE in future # ANAIS: Background ### P. Vilar, RENATA 2016 | | ⁴⁰ K | ²³⁸ U | ²¹⁰ Pb | ²³² Th | |----|--------------------------|------------------|-------------------|--| | D0 | 1.4 mBq/kg
(45 ppb K) | 9 μBq/kg | 3.15 mBq/kg | 5 μ Bq/kg (220 Rn- 216 Po)
3 μ Bq/kg (212 Bi-Po) | | D1 | 1.1 mBq/kg
(34 ppb K) | 9 μBq/kg | 3.15 mBq/kg | 4 μBq/kg (²²⁰ Rn- ²¹⁶ Po) | | D2 | 1.1 mBq/kg
(34 ppb K) | 2.7
μBq/kg | 0.70 mBq/kg | $pprox$ 1 μ Bq/kg (220 Rn- 216 Po)
$pprox$ 1 μ Bq/kg (212 Bi-Po) | | D3 | 0.6 mBq/kg
(19 ppb K) | ~4 μBq/kg | ~1.8 mBq/kg | \approx 0,6 μ Bq/kg (220 Rn- 216 Po)
\approx 0,6 μ Bq/kg (212 Bi-Po) | ## ANAIS: Plan and Sensitivity P. Vilar, RENATA 2016 - Expected to run by March 2017 - Sensitivity comparable to DAMA signal with 5 years of running - 1-6 keV region - D2 background level F. Forborg, IDM2016 - ~50 kg of ultra pure crystals with liquid scintillator veto - SAFHC-Hitech and Sigma-Aldrich - Plan to install both at LNGS (Italy) and SUPL (Australia) - Proof-of-Principle: 2 kg of crystal grown ## SABRE: Background Expectation - Focusing on lowering K background from a powder level - With new Nal power purification, < 10 ppb was achieved - Not yet instrumented, only ICPMS assay - No ²¹⁰Pb measurement yet - Simulated background shows ~0.13 cpd/kg/keV in 2-6 keV region F. Forborg, IDM2016 | ³⁹ K [ppb] | Seastar | PNNL | DAMA | |-----------------------|----------|---------------|------| | A | 9±1 | 10.0 ± 0.7 | | | В | 7 ± 1 | 9.1 ± 0.3 | | | D | 11 ± 1 | 9.7 ± 0.4 | | | E | 9 ± 1 | 9.8 ± 0.4 | | | Average | 9 | 9.6 | 13 | ## SABRE: Plan and Sensitivity - R&D setup for 1-2 crystals nearly completed - Full detectors construction at LNGS and SUPL start in 2017 - Goal - 50 kg crystals with 3 years of running - ROI: 2-6 keV - Expect to have 0.13 cpd/ kg/keV total background in ROI F. Forborg, IDM2016