TOTEM: status and prospects

Emilio Radicioni – INFN/CERN

Overall Configuration @IP5

T1 telescope with Cathode Strip Chambers (CSCs)

- •3 deg rotation and overlap between adjacent planes
- Primary vertex reconstruction allows background rejection
- Trigger with anode wires

T2 telescope (GEM chambers)

- $65(\phi) \times 24(=1560 \text{ pads})$
- Pads: $\Delta \eta \Delta \Phi = 0.06 \times 0.015 \pi$
- $2x2 \text{ mm}^2 \rightarrow 7x7 \text{ mm}^2$
- Strips: 256 (width/pitch: 80/400 μm)
- TOTAL strips: 256x10x2
- TOTAL pads: 1560x10x2

RP system: total 122880 channels in 4 stations (+/- 220m). 4 additional stations to be installed (+/-147m)

Status

T2 very forward GEM chambers

- Present status: commissioning and alignment
- Track reconstruction in an hostile environment, large particle density
- Severe backgrounds in the very forw cone
- Beam gas and halo interactions
- Photon and hadron interactions producing showers
- Vertex pointing / impact parameter calculation important to reject reinteractions

all 4 quarters installed & operational.

trigger: min bias track,

≥ 5 out of 10 planes in road-coincidence.

Vertex reconstruction

Precision: $\sigma \sim 2$ cm

Roman Pots with edgeless Silicon detectors

Measure elastic & diffractive protons close to the outgoing beams

all 12 pots at 220 m equipped & operational

Track trigger: 3 out of 5 planes in u & v projection road-coincidence

RP tracking in retracted position

Moving RPs w.r.t. Collimators 1 RP @4.4σ (12/2009)

Fully operational T1 in commissioning area

Plans for measurements

RP system acceptance

- Machine optics determines acceptance
- Likely running scenarios in 2010/2011:
- $\beta^*=2m$
- • β *=90m
- Acceptance for diffractive protons and capabilities to extrapolate towards t=0 change dramatically

Elastic Scattering $\sqrt{s} = 7$ TeV, $\beta^* = 2$ m

trigger: RP_{vert,45} .and. RP_{vert,56}

Elastically scattered proton flux

rate few 10 Hz (RP @ 10 σ_{beam} $\beta^* = 2m$, N= 43 & N/bx = 5 10¹⁰)

At larger |t|, σ is several orders of magnitude smaller (≈ mHz) → dedicated long runs with vertical pots at largest possible luminosity

Diffractive p @β*=2m

Pythia SD: $\sigma_{acc,sd} \approx 1.2 \text{ mb (x2)} / \sigma_{sd} \approx 13.7 \text{ mb}$

Phojet CD: $\sigma_{acc,cd} \approx 0.05 \text{ mb} / \sigma_{cd} \approx 1.33 \text{ mb}$

Diffractive p @β*=2m

Courstesy K. Osterberg

diffractive p in horizontal RP's + diffractive system in T2

trigger: RP_{hori,+(-)} & T2₋₍₊₎ (SD), RP_{hori,+} & RP_{hori,-} (CD) rates large (SD ~ tens kHz, CD ~ 200 Hz for $\beta^* = 2 \text{ m}, N_b = 43 \text{ & N}_p/b = 5 \times 10^{10}$)

dσ^{SD}/dM

•
$$0.015 < \xi < 0.15 \implies 850 < M < 2500 GeV$$

σ(M) ≈ 25 GeV

η

SD

dσ^{CD}/dM

125 < M < 800 GeV

 $\sigma(M) \approx 10 \text{ GeV}, \ \sigma(\phi) \approx 6^{\circ}/\sqrt{|t|}$

CD backgrounds: 2 separate SD in same bx & SD + DPE (only 1 p seen) in same bx (\sim 100 & \sim 30 Hz for β^* = 2 m, N_b = 43 & N_p/b = 5 \times 10¹⁰)

$$S/B \propto 1/L_{bx} \Rightarrow$$

 $\downarrow^2 N_{p/bunch} & \uparrow \beta^*$

Summary measurements @®*=2m

RP @ 10 σ_{beam} + 0.5 mm

β* [m]	Process	RP accepted σ [mb]	Accepted rate @ L = 5 *10 ³⁰ / s·cm ² [Hz]**	<events bx=""> @ L_{bx} = 10²⁵ /s-cm^{2**}</events>	Acceptance range in t [GeV ²] or ξ [%]
2	Elastic scattering (PPP3*)	0.004	20	0.00004	~0.6< t < ~5
2	SD, Pythia	2.4	12k	0.024	0.02 ≤ ξ ≤ 0.2
2	CD, Phojet	0.05	250	0.0005	0.02 ≤ ξ ≤ 0.2
2	Min bias, Pythia	60	300k	0.6	N _{track,T2} ≥1

^{*} PPP3: Petrov-Predazzi-Prokudin model, 3 pomeron

**
$$N_{bunch} = 43$$
, $N_{p/bunch} = 5 \cdot 10^{10} \& \beta^* = 2 \text{ m} \Rightarrow L_{bx} = 10^{25} \text{ cm}^{-2}$

Studies @ β *=90m

Access to a much larger |t| and ξ range

```
-->
```

- Elastic scattering in a wider |t| range
- Total cross section at 5% ÷ 6% accuracy
 - T1 to complete η coverage
- Soft diffraction in a large M range (65% of diffractive protons are detectable)
- Systematic study the event classification of interest for HECR: SD, inelasticity, rates and multiplicity

T2-only studies (5.3 $<\eta$ <6.5)

- May be performed at any β*
- $dN_{charged}/d\eta$
- Search for high charged multiplicity events
- Rate very high at β *=2m
- Conditions
 - Trigger: T2_{plus}(≥n track) .or. T2_{minus}(≥n track)
 - Require \leq 1 interaction/bx, i.e. \leq 0.35/bx
 - At standard bunch intensity, take data at end of fill?
 - Require good understanding of tracking, vertexing and primary/secondary track discrimination

Summary

- . Early measurements at all β^*
 - Large |t| elastic (0.65 < |t| < 5 GeV²)
 - Large mass SD and CD
 - Forward charged multiplicity (T2-only)
 - (+ training for better optics)
- Later measurements with special optics, β *=90m
 - Early measurements of σ_{tot} with precision 5%÷6%
 - Elastic scattering in a lower range (0.15 < |t| < 2.5 GeV²)
 - SD and CD in a large M range
 - Classification of inelastic events

