

Data access and ATLAS job
performance

Charles G Waldman
University of Chicago

OSG Storage Workshop, Sep 21-22 2010

Factors affecting job performance

• Algorithmic efficiency and code optimization

• VM footprint (swapping)

• I/O wait – data access (mostly inputs)

We can measure events/sec or CPU time/walltime.
Here we're mostly using CPU/walltime

 1 - Observe and advise
 2 - Provision enough RAM, fight bloat
 3 - Of great interest to storage community!

2 types of data access

 Stage-in
 Files copied to /scratch and (usually) cleaned up

after job completion
 Direct-access (and other names)

 dcap, xroot, others (Hadoop, Lustre, other Posix)
 “Run across the bridge or walk across?”

 If the bridge is sound, why not walk?
 If it's not sound – let's fix it!

Stage-In

 Good if inputs are reused (pcache)
 See http://www.mwt2.org/~cgw/talks/pcache

 Good if entire files are read mostly
sequentially

 Allows for good control of timeout/retry
behavior (lsm-get)

 Allows for checksum verification

Stage-In cont'd

 BUT:
 Creates high I/O load on local disk (esp. ATLAS

analysis jobs). File is first written to disk, read
back for checksum, then read again for use by
job... (could disable checksum)

 Major performance degradations seen with
8 cores / 1 spindle (will only get worse with
hyperthreading)

 Do we equip all worker nodes with RAID0, or ...

Direct-Access

 Concentrates investment in high-performance
storage hardware (e.g. Dell MD1000s)

 Good for jobs with sparse data access
patterns, or files which are not expected to be
reused

 In use at SLAC (xroot)
 Currently testing at MWT2/AGLT2 (dCache)
 Same amount of data (or less!) moved, but

latency is a consideration since job is waiting

MWT2 tests

 Stage-in (lsm-get/pcache) for production,
direct-access for analysis

 dCache tests using ANALY_MWT2
 pcache for non-root files (DBRelease / *lib.tgz)

 xrd tests on ANALY_MWT2_X
 pcache not currently enabled

 Some IU nodes in UC queue, for non-local I/O
testing

Monitoring

 Hammercloud link
 effcy.py link
 SysView link

– new feature - local SQL db

http://hammercloud.cern.ch/atlas/10001053/test/
http://www.mwt2.org/sys/effcy.txt
http://www.mwt2.org/~cgw/sys/view

dCache-specific observations

 Movers must not queue at pools!
 set max_active_movers to 1000

 Setting correct ioscheduler is crucial
 cfq = total meltdown (throughput, not fairness!)
 noop is best – let RAID controller handle it

 Hot pools must be avoided
 spread datasets on arrival (space cost=0), and/or

use p2p. “Manual” spreading so far not needed
 HOTDISK files are replicated to multiple servers

dCache cont'd

 Many jobs hanging when direct-access was
first enabled...

 dcap direct access is a less-tested code path
 Invalid inputs causing hangups due to

brittleness in dcap protocol (buffer overflows,
unintentional \n in file name)

 All job failures turned out to be due to such
issues (sframe, prun...)

 dcap library patch submitted to dcache.org

dCache read-ahead

 Readahead is key, esp. for non-local nodes
 DCACHE_RAHEAD=TRUE
 DCACHE_RA_BUFFER=32768

 32 kilobytes of read-ahead
 These settings are common in ATLAS, may need

to be studied
 Too much readahead is clearly harmful

− Relation of dcache readahead to blockdev readahead

dcap++ (LCB: Local Cache Buffer)

 Gunter Duckeck, Munich (link)
 100 RAM buffers, 500 KB each

 Hardcoded, needs to be tuneable
 Sensitive to layout of ATLAS data files
 Tuned for earlier release, 500KB is too big

 In use in .de cloud (and mwt2) w/ good results
 Awaiting upstream merge (6 months pending)

http://www.dcache.org/manuals/20100419-hepix-dcache.pdf

Xroot observations

 Read-ahead in xroot is complex – subject of
someone's PhD thesis

 Tuned for BaBAR?
 Working w/ Wei Yang and Andy H. to tune

readahead for ATLAS needs

Read-ahead in general

 We need to make sure we don't optimize for
one particular job at the expense of others
(e.g. are we just tuning for Hammercloud?)

 Needs to be flexible so parameters can be
tuned for different ATLAS releases or user
jobs (advanced user may want to control
these values themselves)

 No “one-size-fits-all” answer

Hammercloud plots

1000687, libdcap++, local nodes only

Hammercloud plots 2

10001055 dcap++, local+remote nodes

Hammercloud plots 3

10000957: std. dcap, local+remote

Some results

 CPU/Walltime efficiency (rough #'s):

Local I/O Remote I/O

dcap 65% ~35%

dcap++ 78% ~55%

xroot 78% 40%

References

stage-in vs direct-access studies

http://www.usatlas.bnl.gov/twiki/bin/view/Admins/rsrc/Admins/MinutesAug4/dcache-access.2010.08.04.pptx.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

