

Data access and ATLAS job
performance

Charles G Waldman
University of Chicago

OSG Storage Workshop, Sep 21-22 2010

Factors affecting job performance

• Algorithmic efficiency and code optimization

• VM footprint (swapping)

• I/O wait – data access (mostly inputs)

We can measure events/sec or CPU time/walltime.
Here we're mostly using CPU/walltime

 1 - Observe and advise
 2 - Provision enough RAM, fight bloat
 3 - Of great interest to storage community!

2 types of data access

 Stage-in
 Files copied to /scratch and (usually) cleaned up

after job completion
 Direct-access (and other names)

 dcap, xroot, others (Hadoop, Lustre, other Posix)
 “Run across the bridge or walk across?”

 If the bridge is sound, why not walk?
 If it's not sound – let's fix it!

Stage-In

 Good if inputs are reused (pcache)
 See http://www.mwt2.org/~cgw/talks/pcache

 Good if entire files are read mostly
sequentially

 Allows for good control of timeout/retry
behavior (lsm-get)

 Allows for checksum verification

Stage-In cont'd

 BUT:
 Creates high I/O load on local disk (esp. ATLAS

analysis jobs). File is first written to disk, read
back for checksum, then read again for use by
job... (could disable checksum)

 Major performance degradations seen with
8 cores / 1 spindle (will only get worse with
hyperthreading)

 Do we equip all worker nodes with RAID0, or ...

Direct-Access

 Concentrates investment in high-performance
storage hardware (e.g. Dell MD1000s)

 Good for jobs with sparse data access
patterns, or files which are not expected to be
reused

 In use at SLAC (xroot)
 Currently testing at MWT2/AGLT2 (dCache)
 Same amount of data (or less!) moved, but

latency is a consideration since job is waiting

MWT2 tests

 Stage-in (lsm-get/pcache) for production,
direct-access for analysis

 dCache tests using ANALY_MWT2
 pcache for non-root files (DBRelease / *lib.tgz)

 xrd tests on ANALY_MWT2_X
 pcache not currently enabled

 Some IU nodes in UC queue, for non-local I/O
testing

Monitoring

 Hammercloud link
 effcy.py link
 SysView link

– new feature - local SQL db

http://hammercloud.cern.ch/atlas/10001053/test/
http://www.mwt2.org/sys/effcy.txt
http://www.mwt2.org/~cgw/sys/view

dCache-specific observations

 Movers must not queue at pools!
 set max_active_movers to 1000

 Setting correct ioscheduler is crucial
 cfq = total meltdown (throughput, not fairness!)
 noop is best – let RAID controller handle it

 Hot pools must be avoided
 spread datasets on arrival (space cost=0), and/or

use p2p. “Manual” spreading so far not needed
 HOTDISK files are replicated to multiple servers

dCache cont'd

 Many jobs hanging when direct-access was
first enabled...

 dcap direct access is a less-tested code path
 Invalid inputs causing hangups due to

brittleness in dcap protocol (buffer overflows,
unintentional \n in file name)

 All job failures turned out to be due to such
issues (sframe, prun...)

 dcap library patch submitted to dcache.org

dCache read-ahead

 Readahead is key, esp. for non-local nodes
 DCACHE_RAHEAD=TRUE
 DCACHE_RA_BUFFER=32768

 32 kilobytes of read-ahead
 These settings are common in ATLAS, may need

to be studied
 Too much readahead is clearly harmful

− Relation of dcache readahead to blockdev readahead

dcap++ (LCB: Local Cache Buffer)

 Gunter Duckeck, Munich (link)
 100 RAM buffers, 500 KB each

 Hardcoded, needs to be tuneable
 Sensitive to layout of ATLAS data files
 Tuned for earlier release, 500KB is too big

 In use in .de cloud (and mwt2) w/ good results
 Awaiting upstream merge (6 months pending)

http://www.dcache.org/manuals/20100419-hepix-dcache.pdf

Xroot observations

 Read-ahead in xroot is complex – subject of
someone's PhD thesis

 Tuned for BaBAR?
 Working w/ Wei Yang and Andy H. to tune

readahead for ATLAS needs

Read-ahead in general

 We need to make sure we don't optimize for
one particular job at the expense of others
(e.g. are we just tuning for Hammercloud?)

 Needs to be flexible so parameters can be
tuned for different ATLAS releases or user
jobs (advanced user may want to control
these values themselves)

 No “one-size-fits-all” answer

Hammercloud plots

1000687, libdcap++, local nodes only

Hammercloud plots 2

10001055 dcap++, local+remote nodes

Hammercloud plots 3

10000957: std. dcap, local+remote

Some results

 CPU/Walltime efficiency (rough #'s):

Local I/O Remote I/O

dcap 65% ~35%

dcap++ 78% ~55%

xroot 78% 40%

References

stage-in vs direct-access studies

http://www.usatlas.bnl.gov/twiki/bin/view/Admins/rsrc/Admins/MinutesAug4/dcache-access.2010.08.04.pptx.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

