# Light Detector Concept(s) for the VD

# PoF + SiPM + (X)ARAPUCA on HV surfaces

Flavio Cavanna, Bill Pellico, Francesco Terranova

(and Francesco P, Dante, Ettore, Ana, Franciole, Laura, Serhan, Umut, Bo)

### Why a Photon Detector in VD layout for DUNE UG-FD

Energy deposition in liquid argon yields two signals:

- free charge from ionization
- fast *scintillation light*.
- Photon detectors (PD) are implemented in LArTPC experiments and light signals are used for to determination and Triggering purposes (detecting a minimal fraction of emitted light)
- With an efficient photon detector ⇒ calorimetric energy reconstruction with good resolution (demonstrated by ARAPUCA in ProtoDUNE-SP and LArIAT)
- With a sufficient coverage,  $\sim 4\pi$  distributed  $\Rightarrow$  Precise pointing in space (and rough tracking) Lower detection threshold
- Potentially, TWO DETECTORS in one Volume: LArTPC and PDS complementary for improved detection efficiency, enhanced energy resolution and maximal LiveTime particularly important for detection & reconstruction of low energy underground events and background rejection

## Conceptual design for VD PD basic System: "SP mirror solution"

- PDS cannot be located at the Anode Plane (as in the SP Module)
- If a solution for operating a PD on HV surfaces is found:

PD active coverage distributed into the Cathode side (mirror solution of SP w/ PD into APA)

+

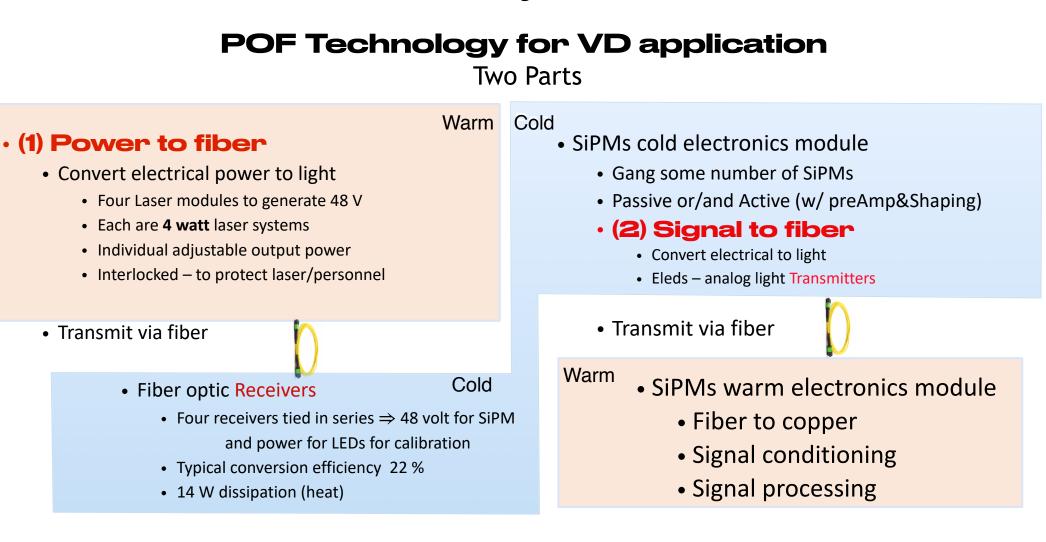
PD passive coverage (reflector) onto Anode side (laminated on perforated PCB facing LAr)

+

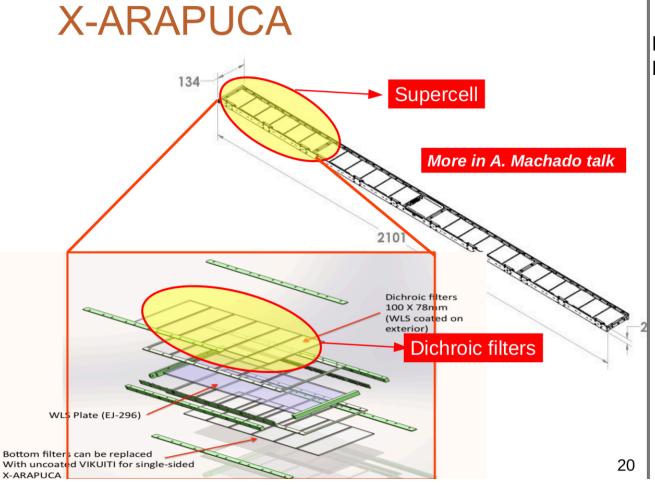
Xe doping (minimize Rayleigh scatter for light at far distance )

compared w/ 1st SP Module this solution **would allow**\* for comparable LY/Energy resolution, better Uniformity of response and some pointing capability at a lower fabrication cost

\* need simulation study


- Operating PD on HV surface: requirements, base solutions, alternatives
  - \* PD based on SiPM (low Bias V, minimal occupancy)
  - \* Bias Voltage Supply (IN), Transmit Signal (OUT)
    - \* PoF (Bias V) Receiver & PoF (Signal) Transmitter
    - \* PoF Receiver (Bias V) & WiFi (Signal) Transmitter
  - \* **SiPM Cold Electronics** (if used, it also requires Power => more from PoF receiver)
- Detector design and coverage: (X)ARAPUCA technology with SiPM photosensors is suitable for this application (flexible design opposite to PMT, optimization for Xe light)

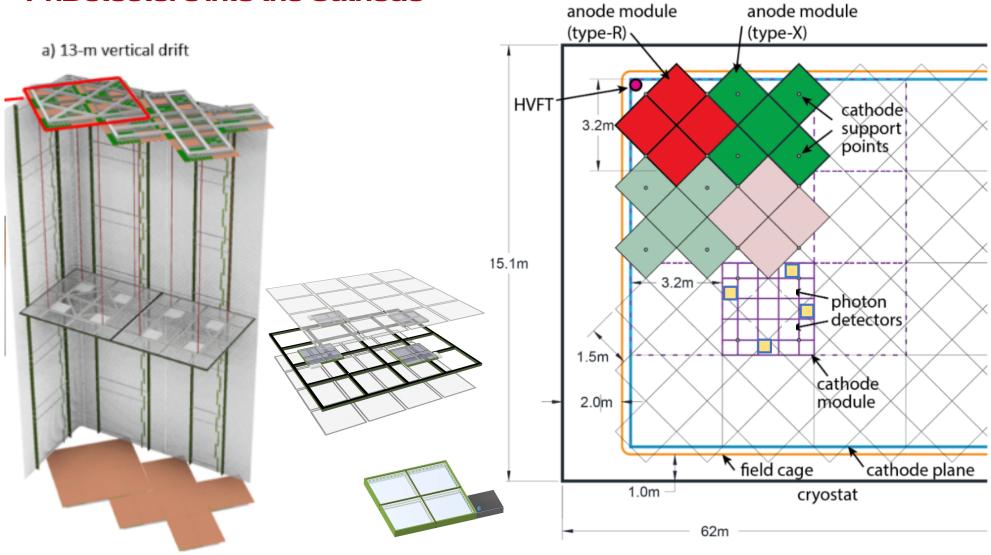
R&D Major


Major

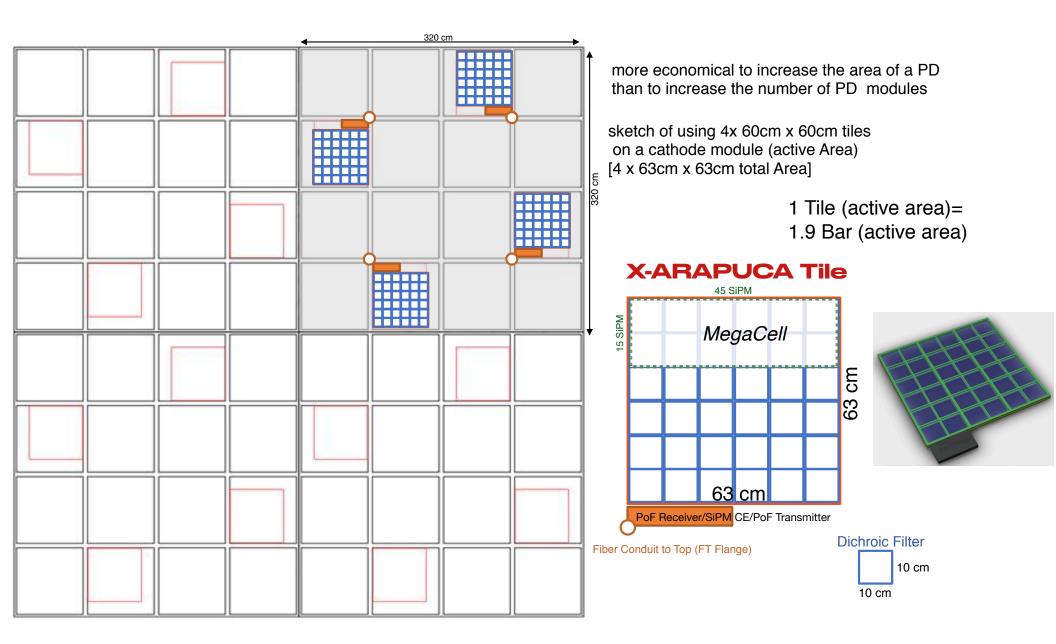
• Fiber Routing (IN and OUT) Design Effort

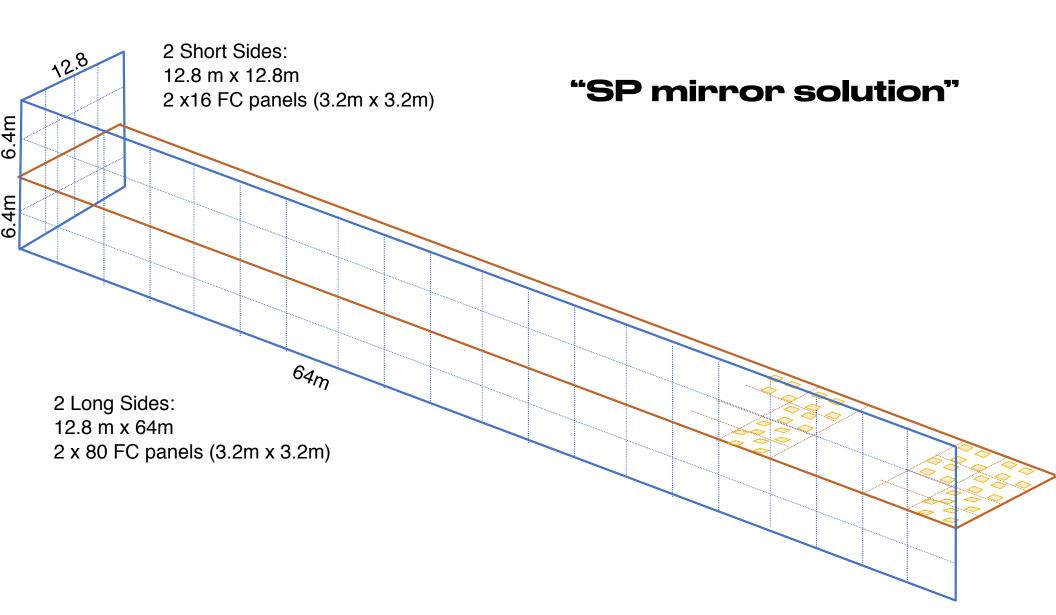
How to **supply bias voltage** to the photo-sensors (in the range of 50 V or less) on the HV surfaces and to **read-out the signal** out of HV surface




### (X)ARAPUCA PD technology for VD application




Bar Tot Area: 2101x134=281534 mm2 Bar Active Area: 4x6x(100x78)=187000mm2


SuperCell: 6x(100x78)=46800 mm2

SiPM are passively ganged in groups of 6, 8 groups of 6 are then actively ganged by a cold summing board into one channel of 48 SiPMs

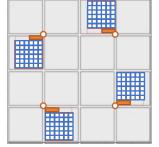


#### **PhDetectors into the Cathode**





| П        |   | 11 | T |
|----------|---|----|---|
|          |   |    |   |
| E        |   |    | b |
| Н        | H |    | H |
| <b>)</b> |   |    | - |


Item (per Tile)

Tot. Area

SiPMs

R/O Ch.s

1 PI



4 Tiles in a Catho

|             | Active Area                                 | 1                                 | 600 x 600 mm <sup>2</sup> = 0.36 m <sup>2</sup> | 4x6x(100x78) mm <sup>2</sup> = 0.19 m <sup>2</sup> |
|-------------|---------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------------------------|
|             | WLS plates ("MegaCell")                     | 3                                 | 600 x 200 mm <sup>2</sup> = 0.12 m <sup>2</sup> | 6x(100x78) mm <sup>2</sup> = 0.05 m2               |
|             | Dichroic Filters                            | 36+36 (two-sided)                 | 100 x 100 mm <sup>2</sup>                       | 24+24 (100 x 78) mm <sup>2</sup>                   |
|             | PhotoSensors (SiPM)                         | 360<br>(120 per <i>MegaCell</i> ) |                                                 | 192                                                |
| PD Tile     | ReadOut Channels                            | 6 (2 per MegaCell)                |                                                 | 4 (1 per SuperCell)                                |
|             | SiPMs per Channel                           | 60                                |                                                 | 48                                                 |
|             | Weight                                      | ~ 4.5 kg                          |                                                 |                                                    |
|             | Item (per Cathode Module)                   | Number                            |                                                 |                                                    |
|             | PD Tiles                                    | 4                                 |                                                 |                                                    |
| <b></b>     | MegaCells                                   | 12                                |                                                 |                                                    |
|             | Dichroic Filters                            | 144+144                           |                                                 |                                                    |
|             | SiPMs                                       | 1440                              |                                                 |                                                    |
|             | R/O Ch.s                                    | 24                                |                                                 |                                                    |
|             | PD Active/Cathode<br>ModuleTotal Area Ratio | 14%                               |                                                 |                                                    |
| node Module | PD Weight                                   | 18 kg                             |                                                 |                                                    |
|             |                                             |                                   |                                                 |                                                    |
|             | Item (per Cathode<br>Plane)                 | Number                            | Dimensions (Area)                               | Single<br>Phase Module                             |
|             | Cathode Modules                             | 80                                | 3200 x 3200 mm <sup>2</sup>                     |                                                    |
|             | PD Tiles                                    | 320                               |                                                 | 1500                                               |
|             | MegaCells                                   | 960                               |                                                 | 6000                                               |
| Disco       | Dichroic Filters                            | 23,040                            |                                                 | 48,000                                             |
|             |                                             |                                   |                                                 |                                                    |

Number

1

**Dimensions (Area)** 

630 x 630 mm<sup>2</sup> = 0.4 m<sup>2</sup>

"SP mirror solution"

in the Cathode Plane

320 Tiles

23,040 115,200 1920

48,000 288,000 6000

Single Phase (Xarapuca bar)

2101 x 134  $mm^2 = 0.28 m^2$ 

#### Conceptual design for <u>TWO DETECTORS in one</u> VD Volume

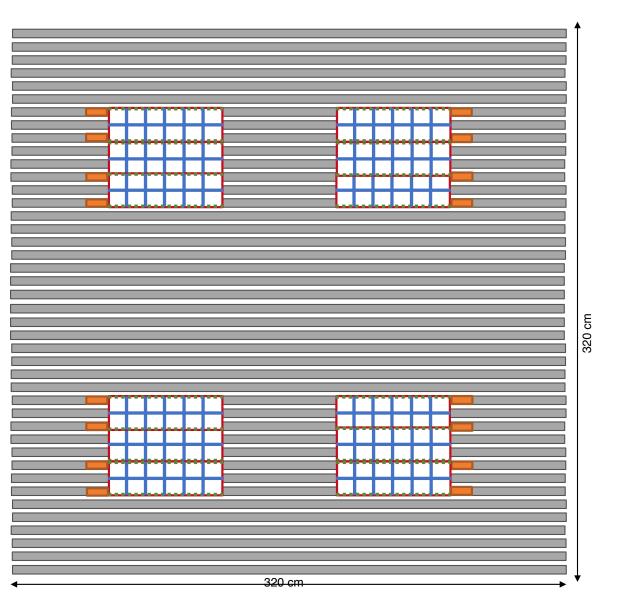
• If a solution for operating a PD on HV surfaces is found:

PD active coverage distributed onto 5 sides of the LAr Volume (Cathode side and 4 Field Cage sides) + PD passive coverage (reflector) onto Anode side (laminated on perforated PCB) + Xe doping (minimize Rayleigh scatter for light at far distance )

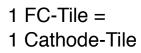
This would allow  $4\pi$  coverage: full uniformity of response, energy resolution, low threshold and pointing capability It would be a second detector - for Ar Light Signals - complementary to LArTPC:

- complete exploitation of LAr (collect all energy deposited)
- Guarantee highest Live Time (active also when LArTPC is OFF for purity drop, HV issues,...) very relevant for UG Physics
- Start data taking (SN observer) six months/one year before LArTPC (while LAr filling)

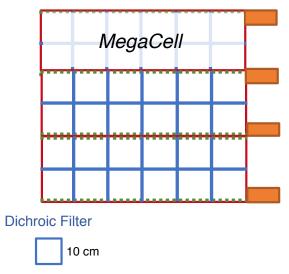
#### a) 13-m vertical drift



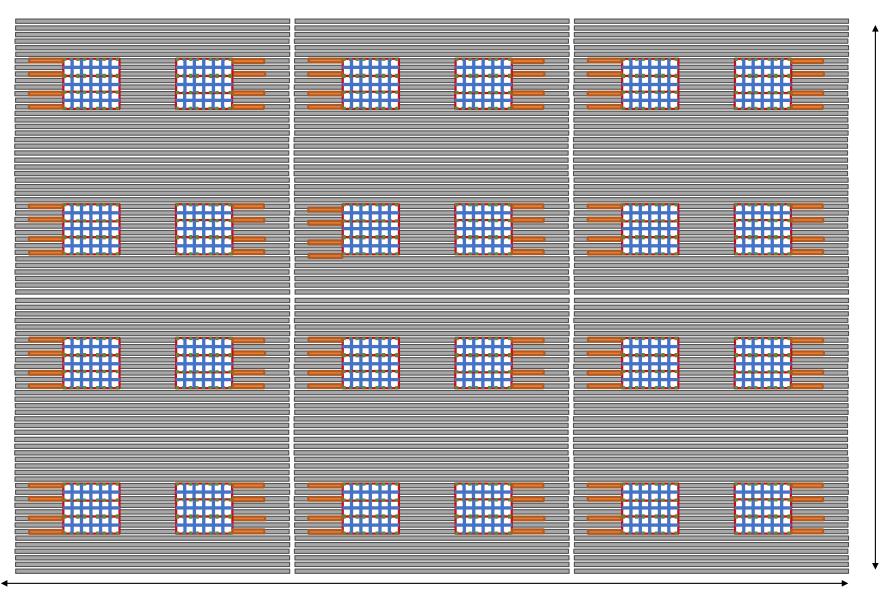

#### **TWO DETECTORS** in one


#### PhDetectors onto the FieldCage



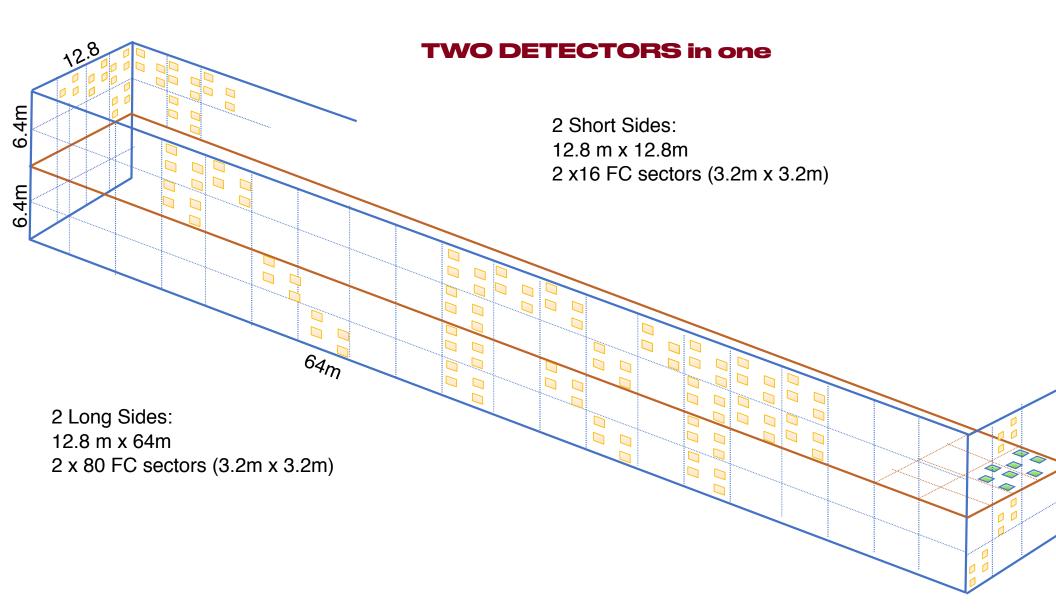

FIG. 10. Conceptual design of a PD module mounted on the inside of the field cage facing the active volume. The SiPMs are mounted on either the top or the bottom edges of the PD module, with no conductors in between. These SiPMs are powered by two sets of independent PoF and readout modules biased at different voltages as defined by the top and bottom most field cage profiles they are attached to.



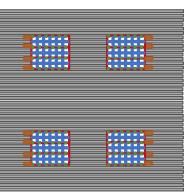

sketch of using 4x 60cm x 60cm tiles on a cathode module (active Area) [4 x 63cm x 63cm total Area]



#### X-ARAPUCA FC-Tile




10 cm




640 cm

960 cm







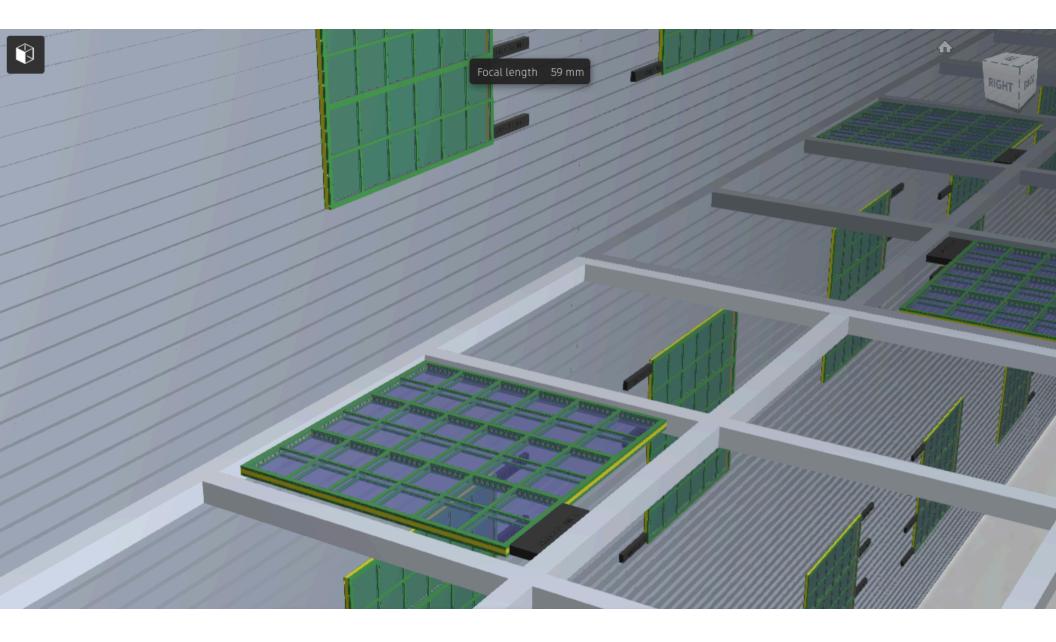
### FC Coverage

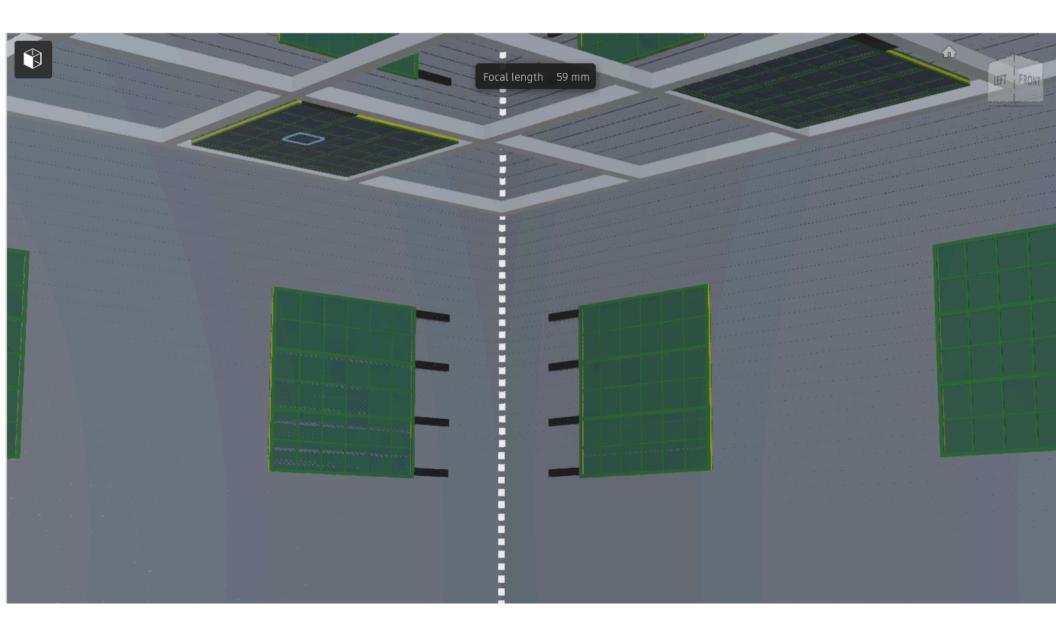
| Item (per FC-Tile)                     | Number                     | Dimensions (Area)                               |   |
|----------------------------------------|----------------------------|-------------------------------------------------|---|
| Tot. Area                              | 1                          | 630 x 630 mm <sup>2</sup> = 0.4 m <sup>2</sup>  |   |
| Active Area                            | 1                          | 600 x 600 mm <sup>2</sup> = 0.36 m <sup>2</sup> |   |
| WLS plates ("MegaCell")                | 3                          | 600 x 200 mm <sup>2</sup> = 0.12 m <sup>2</sup> |   |
| Dichroic Filters                       | 36                         | 100 x 100 mm <sup>2</sup>                       |   |
| PhotoSensors (SiPM)                    | 270 (90 per MegaCell)      |                                                 |   |
| ReadOut Channels                       | 6 (2 per <i>MegaCell</i> ) |                                                 |   |
| SiPMs per Channel                      | 45                         |                                                 |   |
| Weight                                 | ~ 4.5 kg                   |                                                 |   |
| Item (per FC Module)                   | Number                     |                                                 |   |
| PD FC-Tiles                            | 4                          |                                                 |   |
| MegaCells                              | 12                         |                                                 |   |
| Dichroic Filters                       | 144                        |                                                 |   |
| SiPMs                                  | 1080                       |                                                 |   |
| R/O Ch.s                               | 24                         |                                                 |   |
| PD Active/FC ModuleTotal<br>Area Ratio | 14%                        |                                                 |   |
| PD Weight                              | 18 kg                      |                                                 |   |
| Item (per FC)                          | Number                     | FC Module Dimensions (Area)                     | 1 |
| 2 Long Side FC Modules                 | 2 x 80                     | 3200 x 3200 mm <sup>2</sup>                     |   |
| PD FC-Tiles                            | 640                        |                                                 |   |
| MegaCells                              | 1920                       |                                                 |   |
| SiPMs                                  | 172,800                    |                                                 |   |
| R/O Ch.s                               | 3840                       |                                                 |   |
| 2 Short Side FC Modules                | 2 x 16                     |                                                 |   |
| PD FC-Tiles                            | 128                        |                                                 |   |
| MegaCells                              | 384                        |                                                 |   |
| SiPMs                                  | 34,560                     |                                                 |   |
| R/O Ch.s                               | 768                        |                                                 |   |
|                                        |                            |                                                 |   |

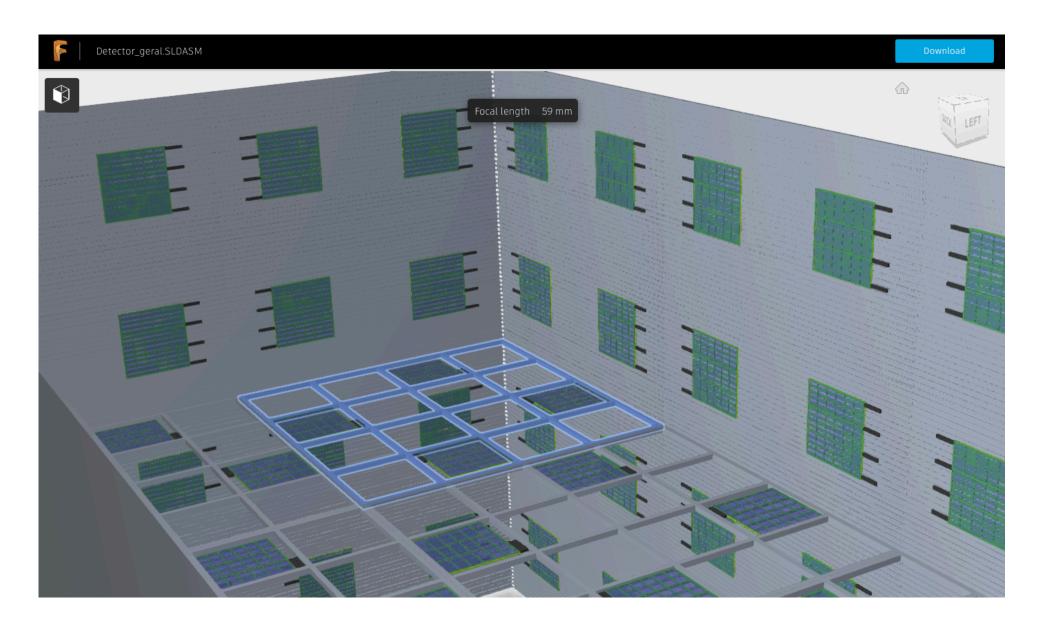
| Single Phase                                     |
|--------------------------------------------------|
| 2101 x 134 mm <sup>2</sup> = 0.28 m <sup>2</sup> |
| $4x6x(100x78) mm^2 = 0.19 m^2$                   |
| 6x(100x78) mm <sup>2</sup> = 0.05 m2             |
| 24+24 (100 x 78) mm <sup>2</sup>                 |
| 192                                              |
| 4 (1 per SuperCell)                              |
| 48                                               |
| 2.3 kg                                           |

#### Cathode Coverage

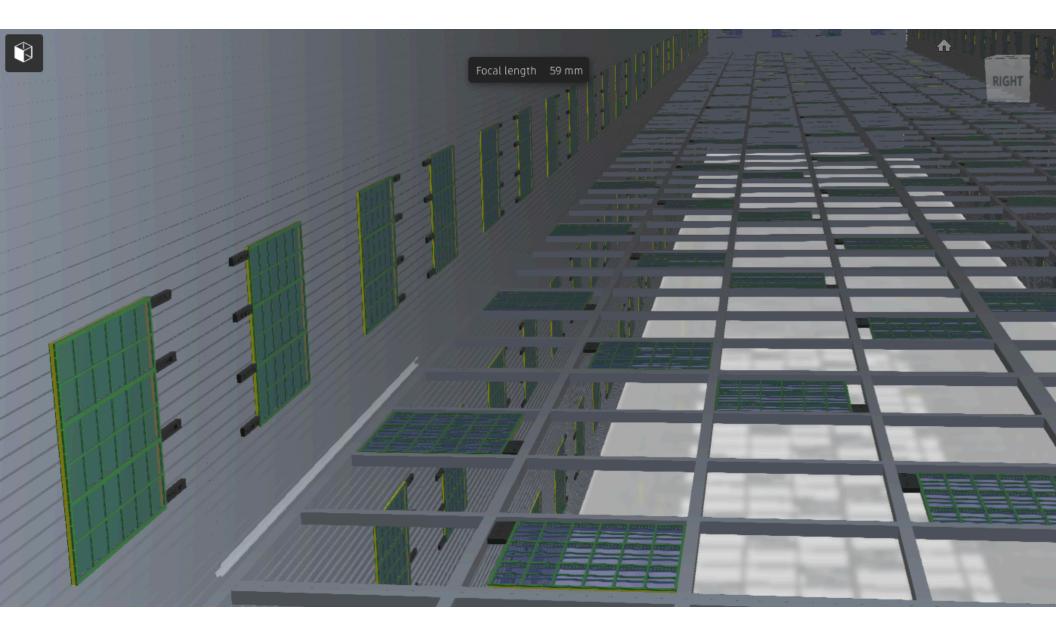
### FieldCage Coverage


| Item (per Cathode Plane) | Number  |
|--------------------------|---------|
| Cathode Modules          | 80      |
| PD Tiles                 | 320     |
| MegaCells                | 960     |
| Dichroic Filters         | 23,040  |
| SiPMs                    | 115,200 |
| R/O Ch.s                 | 1920    |
| Active Coverage          | 14%     |


| Item (per FC - 4sides ) | Number  |
|-------------------------|---------|
| FC Modules              | 192     |
| PD FC-Tiles             | 768     |
| MegaCells               | 2268    |
| Dichroic Filters        | 27,648  |
| SiPMs                   | 207,360 |
| R/O Ch.s                | 4608    |
| Active Coverage         | 14%     |


| VertDrift<br>"TWO DETECTORS | Item (Cathode+FC) | Number                      | Single Phase<br>Module   |
|-----------------------------|-------------------|-----------------------------|--------------------------|
| in one"                     | PD Tiles          | 1088                        | 1500                     |
|                             | MegaCells         | 3228                        | 6000                     |
|                             | Dichroic Filters  | 50,688                      | 48,000                   |
|                             | SiPMs             | 322,560                     | 288,000                  |
|                             | R/O Ch.s          | 6528                        | 6000                     |
| Vs                          | Active Coverage   | 14%<br>(Cathode + FC sides) | 12%<br>(anode side only) |

**Single Phase** 


 $4\pi$  avg. coverage = 10.% (including Anode surface w/out active coverage)











## SUMMARY:

assuming PoF Technology ok for Bias V/IN and Signal/OUT of surface at HV, PDS is based on (X)ARAPUCA technology design. Two options are presented for VD-PDS:

#### - basic solution "SP mirror":

- \* XARAPUCA Cathode coverage (~15%) + Xenon + Reflector on Anode (to compensate for longer drift)
- \* Same "poor" SP-design, same goals/requirements, similar performance of SP PhDet solution
- \* Much lower cost (from 1/3 to 1/2 of SP)

#### - new\*\* solution "TWO DETECTORS in one":

- Cathode Coverage + FieldCage Coverage + Xenon + Reflector on Anode
- Same detector (tile) distributed over 5 HV surfaces (instead of over only one as in "SP Mirror")
- Standard  $4\pi$  coverage design as for Large Volume Scintillator Detectors for UG Physics
- ➡ Standalone detector, complementary to LArTPC
- ➡ Full exploitation of available LAr signals
- ➡ Max Live Time insurance (active also when LArTPC is OFF for purity drop, HV issues,...)
- ➡ Early Start data taking (SN active)
- ➡ Same cost as for SP PDS if in the 10-15% coverage range.
  - Cost & Coverage are tunable
- Either cases require dedicated R&D phase to develop PoF Technology for Bias V/IN and Signal/OUT
- .... either cases look relatively "simple and economic"
- but engineering effort for fiber routing IN/OUT may be not negligible (next step in conceptual design)

# **Physics with Photon Detectors**

- Determination of T0 in all non-beam physics.
  - T0  $\rightarrow$  absolute distance from the readout plane
  - Useful for:
    - Fiducial volume selection (e.g. exclude nucleon decay backgrounds)
    - Correcting for attenuation in TPC signals

## Triggering

- An alternative "trigger primitive" for identifying supernova bursts.
- Combine with the TPC for a sophisticated solar neutrino trigger.

## Calorimetry

- A complimentary energy measurement, even at a few MeV.

## And possibly more:

- Michel tagging, pulse shape discrimination for PID...

## SPPD – High Level Requirements

| Label    | Description                     | Specification<br>(Goal)                     | Rationale                                                                                                                                                                                            | Validation                                                                                            |
|----------|---------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| SP-FD-3  | Light yield                     | > 20 PE/MeV<br>(avg), ><br>0.5 PE/MeV (min) | Gives PDS energy resolution<br>comparable to that of the<br>TPC for 5-7 MeV SN $\nu$ s, and<br>allows tagging of > 99% of<br>nucleon decay backgrounds<br>with light at all points in de-<br>tector. | Supernova and nu-<br>cleon decay events<br>in the FD with full<br>simulation and re-<br>construction. |
| SP-FD-4  | Time resolution                 | < 1 µs<br>(< 100 ns)                        | Enables 1 mm position reso-<br>lution for 10 MeV SNB can-<br>didate events for instanta-<br>neous rate $< 1 \text{ m}^{-3} \text{ms}^{-1}$ .                                                         |                                                                                                       |
| SP-FD-15 | LAr nitrogen con-<br>tamination | < 25 ppm                                    | Maintain 0.5 PE/MeV PDS<br>sensitivity required for trig-<br>gering proton decay near<br>cathode.                                                                                                    | In situ measur-<br>ment                                                                               |