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Abstract

The development of the .

1 Introduction
This note analyzes the dynamics of a the so called Hybrid SiPM array. The hybrid array used
external resistors and capacitors to separate the SiPM biasing from the fast AC signal. In that way,
the DC bias voltage can be applied in parallel to all the SiPMs in the hybrid array; keeping the
bias voltage equal to the single SiPM bias. Instead, the high frequency signal originated by photo
electron activity travel through the SiPMs in a series connection, facilitated by low impedance
capacitors. Figure 1a, 1b and 1c show how the DC bias parallel and fast signal series connection
is facilitated by use of external R and C’s.

To understand the dynamics of the hybrid model we need to understand first the dynamics of a
single SiPM. The model used is the same model used in [1-2] and shown in Figure 1. A single photo
electron (PE) signal is modeled by a pulsed current source of 50uA and 10ns. That is equivalent
to the charge deposited by an avalanche with a typical gain of 3x106. The R and C values of the
SiPM modeled in 1 can be understood in the following way. The active cell (firing 1PE) is one in a
large array. In this particular case we have used the example of a 6mm x 6mm Hamamatsu array
with 14K microcells. The components R0, R1, C0, C1 are associated to the (firing) microcell. The
capacitor C1 is very small, 3.3 fF. It adds a time constant of 50 pico seconds so their transient is
much smaller than the duration of the pulse (i.e. 10ns) and can be ignored in this analysis. For
the dynamic analysis we use the model in figure 2.

2 Dynamic model of a Single SiPM
For the analysis we use the Laplace transform

F (s) =

∫ ∞
0

f(t)e−st dt (1)

where the complex variable s = σ + iω. The conversion to Fourier is straightforward replacing
s by iω. For electrical circuits the impedances become R, XL = SL and XC = 1

SC . To analyze
the dynamics we want to understand the transfer function VM1(s)

IG1(s) in the frequency domain and the
VM1(t) in the time domain. In either case we need the transfer function in the complex variable s of
the total impedance formed by R1, R2 and C0, C2, C3 and C4. That impedance is a combination of
parallel and series. We define Z2 = R2||C2; Z23 = Z2 +XC3; Z234 = Z23||XC4; Z1234 = R1 +Z234;
and Ztotal = Z04 = C0||Z1234 then:

Z2 =
R2

1 + SC2R2
(2)
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Figure 1: SIPM model including voltage bias source and differential load

Figure 2: SIPM model for dynamic study
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Z23 =
R2

1 + SC2R2
+

1

SC3
=

Z23 =
1 + SR2(C2 + C3)

SC3(1 + SC2R2

(3)

Z234 = Z23||
1

C4
=

Z234 =
1 + SR2(C2 + C3)

S(C3 + C4) + S2R2(C2C3 + C2C4 + C3C4)
=

Z234 =
1 + SR2(C2 + C3)

S(C3 + C4)(1 + SR2Ceq)

(4)

where
Ceq =

C2C3 + C2C4 + C3C4

C3 + C4
(5)

We can define
T0 = R2(C2 + C3)
T1 = R2Ceq

S0 = T−10

S1 = T−11

then, Z234 can be written as a algebraic Laplace transform with one finite zero at S0 and two poles
at S = 0 and S1

Z234 = Z0
S + S0

S(S + S1)
(6)

where Z0 = T0

T1(C3+C4)

equivalently,

Z234 =
1 + ST0

(C3 + C4)S(1 + ST1)
(7)

using the typical values for the 6mm x 6mm Hamamatsu S13360-6050VE the time constants and
singularities are:
T0 = 17.4ns
T1 = 2.6ns
S0 = (2π)9.1MHz
S1 = (2π)61.2MHz
To form Z1234 we add R1 in series with Z234

Z1234 =
SR1(C3 + C4)(1 + ST1) + 1 + ST0

(C3 + C4)S(1 + ST1)
(8)

We see that the numerator of (15) is a second order polynomial in S, so it can be written as

Z1234 =
R1T1(S + P1)(S + P2)

S(1 + ST1)
(9)

where, P1 and P2 are the solution of the second order equation numerator of (15). Solving for P1

and P2 using the Hamamatsu S13360-6050VE values finds P1 ≈ 1
T1

and P2 ≈ 5.410−6

T1
= a

T1
. Then,

equation (16) can also be expressed by

Z1234 =
aR1(1 + ST1)(1 + ST1/a)

T1S(1 + ST1)
(10)
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Figure 3: Single SiPM unloaded

Which means a zero and a pole cancel out and

Z1234 =
aR1(1 + ST1/a)

T1S
=
R1(S + P2)

S
(11)

Hence, Z1234 behaves as a single zero at P2 and a single pole at S = 0. Finally, Z01234 or Z04 for
short is

Z1234 =
(S + P1)

(S + PT )
(12)

where

PT =
1

T1
+

1

R1C0
(13)

again, using Hamamatsu S13360-6050VE values, PT = (2π)27.5MHz or a time constant TT =
5.8ns.
A single PE produces an avalanche of about 50uCoul that can be represented by a step function
that generates a voltage Vout across Z04

Vout =
I0(S)

S
Z04 = V0

S + P1

S2(S + PT )
(14)

where V0 = I0T0

(C3+C4)T1
= 650uV

The output voltage transfer function in the time domain is found using the inverse Laplace
transform from equation (16):

Vout(t) = V0

[
1− e−S1t +

t

T0

]
(15)

Although the the dynamics has a term that grows to infinity, we have assumed a single step
function in the positive direction, if we assume a 10ns current pulse, the input reverses sign at
tp = 10ns. when t

T0
0.6V0

Vout(t) = V0

[[
1− e−S1t +

t

T0

]
−
[
1− e−S1(t−t0) +

t− t0
T0

]
u(t− tp)

]
(16)

The simulation shows that the Vout rises from 0 to 877uV at t = 10ns and decays with the same
time constants between 10ns < t < 20ns. At t = 20ns the output voltage stabilizes, since the ideal
current source impedance is modeled as∞, which is not a valid model in real life. If we include the
biasing circuit (R7 and R8) 10K resistors the output discharges very slowly as sown in Figure 4. To
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Figure 4: Single SiPM bias loaded

Figure 5: Four parallel SiPM bias loaded

avoid the long time discharge, another load (Rout1andRout2areprovided(1).Furthermore, theVout

is AC coupled using Cout1andCout2toeliminatethehighDCbiasvoltage, typically 48volts.
Obviously, the loaded SiPM will have a different dynamics but before digging into that let’s

see what happens when we add SiPMs in parallel.

3 Dynamic model of parallel SiPMs
When we gang many SiPMs in parallel, the capacitance C2, C3 and C4 in the model (1) increase
proportionally to the number of SiPMs. Since we are adding in parallel, the resistance R2 divides
by the same factor. Since the firing cell is still a single cell in the array, R0, R1, C0 and C1 remain
unchanged. The singularities S0 and S1 in 6 also remain unchanged, as well as the time constants
T0 and T1.

S′0 = R′2(C ′2 + C ′3) =
R2

N
(NC2 +NC3) = R2(C2 + C3) = S0 (17)

where N is the number of SiPMs in parallel. Same happens for S1. However, the V0 is modified.
Since,

V ′0 =
I0T

′
0

(C ′3 + C ′4)T ′1
=

I0T0
(NC3 +NC4)T1

=
V0
N

(18)

The output signal is inversely proportional to the number of SiPMs ganged in parallel. Figure
5 shows a maximum voltage of 219uV, four times lower than the maximum of a single SiPM in
Figure 3
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Figure 6: Four parallel SiPM with a load time constant Tload = 100ns

4 The effect of loading the circuit
Loading the SiPM parallel array with Rout1, Rout2, Cout1, and Cout2, modifies the circuit dynamics.
Before deriving the analytical expression of the transfer function V (S) and the temporal response
v(t) we can do a simple qualitative analysis. As shown in Figures 4 and 5after t = 20ns the SiPMs,
unless loaded, slowly discharge through the biasing circuit with a time constant Tbias = Ceq

10K
2 =

1.1us. During 10ns < t < 20ns the circuit discharges at T1 and T0, which are two orders of
magnitude times faster. We can choose a load time constant that is fast enough to drain the Ceq

charge fast but slow enough enough not to affect much the SiPM array dynamics. For instance,
Rout = 50ohm, and Cout = 2nF set a discharge time constant of 100ns 50 times larger than T1.
Figure 6 shows the SiPM array loaded with a load time constant Tload = 100ns. We can also see
that the maximum SiPM array signal has decreased 10% from 218uV to 194uV to to the charge
leaked by the load that increases the voltage across Cout1 and Cout2.

A faster decay requires considering Rout1, Rout2, Cout1, and Cout2 in the transfer function
equations. Since they are in series we can simplify defining RL = Rout1 + Rout2 and CL =
Cout1||Cout2 = Cout2

2 . We can also define the load impedance ZL = RL + 1
SCL

= 1+SCLRL

SCL
. The

load impedance adds a new zero and a new pole to equation 6.

ZT = Z234||ZL =
(1 + ST0) (1 + STL)

S3C3T1TL + S2 (CLT0 + C3 (T1 + TL)) + S (CL + C3))
(19)

ZT =
1

C3T1TL

(1 + ST0) (1 + STL)

s (S2 + Sωn/Q+ ω2
n)

(20)

where
ωn/Q =

CLT0 + C3 (T1 + TL)

C3T1TL
(21)

ω2
n =

CL + C3

C3T1TL
(22)

Equation 20 has, then, a pole at S = 0 and two finite poles at S = S1 and S = S2. The location
of the finite poles will depend on our choice for RL and CL (henceforth TL). For instance, we desire
TL > T1, so TL and T1 >> T0, we can also make CL similar in value to C3. To have a critical
(minimally) dumped system we can choose S1 ∼ S2 ∼ ωn

2Q . In that case TL = 5.8ns, T1 = 15ns,
CL = 0.3nF and RL = 50Ω. Figure 7 shows a simulation of four parallel SiPMs loaded by and
impedance with a 15ns time constant. It can be observed that even for a single PE excitation,
the output voltage has a small undershoot. The undershoot becomes more pronounced for larger
signals. At full dynamic range defined at 2000 PEs the undershoot is considerable. For that reason
we choose loads with longer time constants.

Figure 8 load of CL = 3nF and RL = 50Ω has a time constant of TL = 150ns. We observe
that TL = 150ns generates a longer return to baseline. The load time constant is also related to
sampling frequency and signal to noise ratio.
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Figure 7: Four parallel SiPM with a load time constant Tload = 15ns

Figure 8: Four parallel SiPM with a load time constant Tload = 150ns
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Figure 9: Four parallel SiPM with a load time constant Tload = 17.5ns

Figure 10: Four parallel SiPM with a load time constant Tload = 150ns

The equations that solve equation 12 is in Apendix A. I here mention two examples, the first
one for a CL = 0.3nF , and the second one for CL = 3nF ; RL = 50Ω in both cases.

V0 (t) = 150µV

[
1− 1.1E−t/0.95ns + 0.076e−t/3.8ns + 0.88

t

15.6ns

]
(23)

V0 (t) = 190µV

[
1− 3.3E−t/3.7ns + 2.7e−t/7.1ns + 0.1

t

15.6ns

]
(24)

As we see in Figures 9 and 10 increasing the load capacitance CL from 350pF to 3nF increases
the time constants of the singularities in equations 23 and 23 from T1(CL = 0.3nF ) = 0.98ns
to T1(CL = 3nF ) = 3.7ns and T2(CL = 0.3nF ) = 3.8ns to T1(CL = 3nF ) = 7.1ns. The time
constant of the term linear in t remains at T0 = 15.6ns because is independent of the location of
poles at S1 and S2. The long tail in 10 is a combination of the slower decreasing exponential and
the linear term discharging at T0.

5 The Hybrid model
The hybrid model, as shown in Figure 11 combines the advantage of parallel biasing all the SiPMs
in the array with the advantage of having a serial path for the high speed AC signal. In order
to separate the DC currents and voltages from the AC (i.e. signal) a set of coupling R and C’s
are used in between the parallel stations. At a typical Vbias = 48V two 10KΩ resistors allow to
negatively bias the SiPM array. When the signal fires in avalanche, the 10KΩ resistors with the
equivalent SiPM capacitance, of the order of few nF generate a time constant on the order of
several 10′s of ns, which is much longer than the signal measuring time, but also short enough to
restore the biasing of the SiPM in due time for another incoming event.
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Figure 11: Hybrid model block diagram. Five blocks of 4 parallel SiPMs
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Figure 12: Hybrid simulation circuit model. Five blocks of 4 parallel SiPMs
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Figure 13: Hybrid model transfer function page 1
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Figure 14: Hybrid model transfer function page 2
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Figure 15: Apendix page 1
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Figure 16: Apendix page 2
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Figure 17: Apendix page 3
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