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Abstract
The development of the .

1 Introduction

This note analyzes the dynamics of a the so called Hybrid SiPM array. The hybrid array used
external resistors and capacitors to separate the SiPM biasing from the fast AC signal. In that way,
the DC bias voltage can be applied in parallel to all the SiPMs in the hybrid array; keeping the
bias voltage equal to the single SiPM bias. Instead, the high frequency signal originated by photo
electron activity travel through the SiPMs in a series connection, facilitated by low impedance
capacitors. Figure la, 1b and lc show how the DC bias parallel and fast signal series connection
is facilitated by use of external R and C’s.

To understand the dynamics of the hybrid model we need to understand first the dynamics of a
single SiPM. The model used is the same model used in [1-2] and shown in Figure 1. A single photo
electron (PE) signal is modeled by a pulsed current source of 50uA and 10ns. That is equivalent
to the charge deposited by an avalanche with a typical gain of 3210°. The R and C values of the
SiPM modeled in 1 can be understood in the following way. The active cell (firing 1PE) is one in a
large array. In this particular case we have used the example of a 6mm x 6mm Hamamatsu array
with 14K microcells. The components R0, R1, C0, C1 are associated to the (firing) microcell. The
capacitor C1 is very small, 3.3 fF. It adds a time constant of 50 pico seconds so their transient is
much smaller than the duration of the pulse (i.e. 10ns) and can be ignored in this analysis. For
the dynamic analysis we use the model in figure 2.

2 Dynamic model of a Single SiPM

For the analysis we use the Laplace transform

F(s) = /Ooo f(t)e st dt (1)

where the complex variable s = ¢ + iw. The conversion to Fourier is straightforward replacing

s by iw. For electrical circuits the impedances become R, X; = SL and X¢ = % To analyze

the dynamics we want to understand the transfer function ‘I/gi ((SS)) in the frequency domain and the

V() in the time domain. In either case we need the transfer function in the complex variable s of
the total impedance formed by R1, R2 and C0, C2, C3 and C4. That impedance is a combination of
parallel and series. We define ZQ = R2||02; Z23 = Z2 +X03; 2234 = Z23||Xc4; Z1234 = R1 + Z234;
and Zioar = Zoa = Col|Z1234 then:

R

Zyp= — 2
27 1+ SOyR,

(2)
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Figure 1: SIPM model including voltage bias source and differential load

R1 175k

R212

il
470p

R0 300
| .
L_I

vl

||

1T
COo33f

|
\_C

C31.3n

61 Tﬂ&)

Figure 2: SIPM model for dynamic study
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1
Zo3s = ZZSHE; =

Zoes = 14+ SRy (Cs + Cs) _
27 5(Cs + Cy) + SRy (CoCs + CoCy + C3Cy) (4)

g 1+ SRy(C3 + Cs)
P47 5(Cs 4 Ch) (1 + SRyCey)

where
_ CC3+ G0y + O30y

Ceq N C3+Cy

We can define
To = Ra(C2 + Cs)

T, = RyCy,
So=Ty"
Sy =11

then, Zs34 can be written as a algebraic Laplace transform with one finite zero at Sy and two poles
at S =0 and S

Togy = Zom (6)
where Zy = ﬁ
equivalently, 1+ ST,
Zazs = T C:)—S(10+ ST) (7)

using the typical values for the 6mm x 6mm Hamamatsu S13360-6050VE the time constants and
singularities are:

To = 17.4ns

T, = 2.6ns

So = (2m)9.1MHz

S1 = (2m)61.2MHz

To form Zq934 we add Ry in series with Zssy

SR (Cs+ Cy)(1+ STh) + 1+ STy

Z1934 = 8
1 (Cs5+Cy)S(1+ ST) ®)
We see that the numerator of (15) is a second order polynomial in S, so it can be written as
g R\Ti(S+ P)(S + P2) )
1234 S+ 5Ty

where, P, and P; are the solution of the second order equation numerator of (15). Solving for P

and P, using the Hamamatsu S13360-6050VE values finds P =~ T% and P ~ % = T% Then,
equation (16) can also be expressed by

CLR1(1 + STl)(l + STl/a)
T.5(1+ 5T1)

Z1234 = (10)
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Figure 3: Single SiPM unloaded

Which means a zero and a pole cancel out and

aRy (14 STy /a Ri(S+ P
Z1234 = 1 7.5 1/a) = i g 2) (11)

Hence, Z1234 behaves as a single zero at P, and a single pole at S = 0. Finally, Zy1234 or Zp4 for
short is

(S+P)
Z = —"2 12
1234 S+ Pr) (12)
where
1 1
Pr=— 13
"= T RiGy (13)

again, using Hamamatsu S13360-6050VE values, Pr = (27)27.5M H, or a time constant Tp =
5.8ns.

A single PE produces an avalanche of about 50uCoul that can be represented by a step function
that generates a voltage V,,; across Zp,

Iy (S S+ P
Vo = 25 gy SED

S S2(S + Pr) (14)

— 1o T, —
where Vy = m = 650uV
The output voltage transfer function in the time domain is found using the inverse Laplace
transform from equation (16):

t
Vout () = Vo [1 —e ity } (15)
To
Although the the dynamics has a term that grows to infinity, we have assumed a single step
function in the positive direction, if we assume a 10ns current pulse, the input reverses sign at
t, = 10ns. when T% 0.6Vp

;} B [1 _ e—Silt—to) t;to} u(t — tp)} (16)

Vout(t) = VO H:l - e_Slt +
0 0

The simulation shows that the V,,; rises from 0 to 877uV at ¢ = 10ns and decays with the same

time constants between 10ns < t < 20ns. At t = 20ns the output voltage stabilizes, since the ideal

current source impedance is modeled as oo, which is not a valid model in real life. If we include the

biasing circuit (R7 and R8) 10K resistors the output discharges very slowly as sown in Figure 4. To
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Figure 4: Single SiPM bias loaded
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Figure 5: Four parallel SiPM bias loaded

avoid the long time discharge, another load (Ryz1andRoyoareprovided(1). Furthermore, theV
is AC coupled using C,,1andCyyotoeliminatethehigh DCbiasvoltage, typically 48volts.

Obviously, the loaded SiPM will have a different dynamics but before digging into that let’s
see what happens when we add SiPMs in parallel.

3 Dynamic model of parallel SiPMs

When we gang many SiPMs in parallel, the capacitance Cs, C3 and Cy in the model (1) increase
proportionally to the number of SiPMs. Since we are adding in parallel, the resistance Ry divides
by the same factor. Since the firing cell is still a single cell in the array, Ry, Ry, Cp and C; remain
unchanged. The singularities Sy and S in 6 also remain unchanged, as well as the time constants
TO and Tl.

R
56 = R/Q(Cé + Cé) = WQ(NCQ + NC;),) = RQ(CQ + 03) =5y (17)

where N is the number of SiPMs in parallel. Same happens for S;. However, the Vj is modified.
Since,

Vi = I, T} _ IyTy _ Vo

(ct+cCyTy (NCs3+NCy)Ty N

The output signal is inversely proportional to the number of SiPMs ganged in parallel. Figure

5 shows a maximum voltage of 219uV, four times lower than the maximum of a single SiPM in
Figure 3

(18)
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Figure 6: Four parallel SiPM with a load time constant Tj,,q = 100ns

4 The effect of loading the circuit

Loading the SiPM parallel array with Ro.1, Rout2, Cout1, and Coyia, modifies the circuit dynamics.
Before deriving the analytical expression of the transfer function V(S) and the temporal response
v(t) we can do a simple qualitative analysis. As shown in Figures 4 and bafter ¢ = 20ns the SiPMs,
unless loaded, slowly discharge through the biasing circuit with a time constant Ty;qs = C’eq% =
1.1us. During 10ns < t < 20ns the circuit discharges at T} and Ty, which are two orders of
magnitude times faster. We can choose a load time constant that is fast enough to drain the Cyq
charge fast but slow enough enough not to affect much the SiPM array dynamics. For instance,
Rout = 500hm, and Cyyy = 2nF set a discharge time constant of 100ns 50 times larger than 7.
Figure 6 shows the SiPM array loaded with a load time constant 7j,,q = 100ns. We can also see
that the maximum SiPM array signal has decreased 10% from 218uV to 194uV to to the charge
leaked by the load that increases the voltage across Cyyt1 and Cyyto.

A faster decay requires considering Roui1, Rout2, Cout1, and Coyse in the transfer function
equations. Since they are in series we can simplify defining Ry, = Rou1 + Routz and Cp =
Cout1||Couta = % We can also define the load impedance Z; = Ry, + Sé’L = %. The
load impedance adds a new zero and a new pole to equation 6.

(1+ STy) (1 + ST

Zp = Zoza||Z1, = 19
T = Zasl| 21 S3CsT T, + S? (CrTy + Cs (Ty + T1)) + S (Cr + Cs)) 19)
1 (14STy) (14 STy)

T — 20
T O Ty s (5?4 Sw,/Q + w?) 20)

where o T s (T T )

rdo+Cs(d1+ 1L
10 = 21
wn/Q CaTi Ty (21)

Cr + Cs
2

Yn = Cu T, (22)

Equation 20 has, then, a pole at S = 0 and two finite poles at S = S; and S = S3. The location
of the finite poles will depend on our choice for Ry, and C}, (henceforth T7,). For instance, we desire
Ty, > Ty, so T, and T; >> Tp, we can also make Cp, similar in value to C3. To have a critical
(minimally) dumped system we can choose S; ~ Sy ~ ;Jé In that case T, = 5.8ns, T7 = 15ns,
Cr, = 0.3nF and Ry = 5092. Figure 7 shows a simulation of four parallel SiPMs loaded by and
impedance with a 15ns time constant. It can be observed that even for a single PE excitation,
the output voltage has a small undershoot. The undershoot becomes more pronounced for larger
signals. At full dynamic range defined at 2000 PEs the undershoot is considerable. For that reason
we choose loads with longer time constants.

Figure 8 load of C;, = 3nF and R; = 5082 has a time constant of 77, = 150ns. We observe
that 77, = 150ns generates a longer return to baseline. The load time constant is also related to
sampling frequency and signal to noise ratio.
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Figure 7: Four parallel SiPM with a load time constant Tj,,q = 15ns
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Figure 8: Four parallel SiPM with a load time constant Tj,,q = 150ns
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Figure 10: Four parallel SiPM with a load time constant Tj,,q = 150ns

The equations that solve equation 12 is in Apendix A. I here mention two examples, the first
one for a Cp, = 0.3nF, and the second one for C;, = 3nF'; R, = 502 in both cases.

=1 1— 1.1E—t/0.95ns ) —t/3.8ns . 9
Vo (t) = 150pV [ +0.076e +0.88 7= (23)
t
Vo (t) = 190uV |1 — 3.3E7/3s 4 9 7e=t/T1ns 4 (1 24
o) a { Hade + 15.6ns (24)

As we see in Figures 9 and 10 increasing the load capacitance C, from 350pF to 3nF' increases
the time constants of the singularities in equations 23 and 23 from T7(Cr = 0.3nF) = 0.98ns
to T1(Cr, = 3nF) = 3.7ns and T»(Cr, = 0.3nF) = 3.8ns to T1(Cr, = 3nF) = 7.1ns. The time
constant of the term linear in ¢ remains at Ty = 15.6ns because is independent of the location of
poles at S7 and S3. The long tail in 10 is a combination of the slower decreasing exponential and
the linear term discharging at Tp.

5 The Hybrid model

The hybrid model, as shown in Figure 11 combines the advantage of parallel biasing all the SiPMs
in the array with the advantage of having a serial path for the high speed AC signal. In order
to separate the DC currents and voltages from the AC (i.e. signal) a set of coupling R and C’s
are used in between the parallel stations. At a typical Vp;qs = 48V two 10K resistors allow to
negatively bias the SiPM array. When the signal fires in avalanche, the 10K§2 resistors with the
equivalent SiPM capacitance, of the order of few nF' generate a time constant on the order of
several 10’s of ns, which is much longer than the signal measuring time, but also short enough to
restore the biasing of the SiPM in due time for another incoming event.
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Figure 11: Hybrid model block diagram. Five blocks of 4 parallel SiPMs
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