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Abstract: This paper presents a low noise amplifier for large arrays of silicon photomultipliers
(SiPMs) operated in cryogenic environments, especially liquid argon (87K) and liquid nitrogen
(77K). The goal is for one amplifier to read out a total photosensitive surface of tens of cm2 while
retaining the capability to resolve single photoelectron signals. Due to the large capacitance of
SiPMs, typically a few nF per cm2, the main contributor to noise is the series (voltage) component.
A silicon-germanium heterojunction bipolar transistor (HBT) was selected as the input device
of the cryogenic amplifier, followed by a fully differential operational amplifier, operated in an
unconventional feedback configuration. The input referred voltage noise of the circuit at 77K is
just below 0.4 nV/

√
Hz white (above 100 kHz) and 1 nV/

√
Hz at 10 kHz. The value of the base

spreading resistance of the HBT at 77K was determined from noise measurements at different bias
currents. Power consumption of the full circuit is about 2.5mW. The design gives the flexibility to
optimally compensate the feedback loop for different values of the input capacitance, and obtain a
gain-bandwidth product in the GHz range. The signal-to-noise ratio obtained in reading out SiPMs
is discussed for the case of a 300 kHz low pass filter and compared with the upper limit that would
derive from applying optimum filtering algorithms.

Keywords: Analogue electronic circuits; Front-end electronics for detector readout; Photon de-
tectors for UV, visible and IR photons (solid-state); Noble liquid detectors (scintillation, ionization,
double-phase)
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1 Readout of large arrays of SiPMs

In recent years, silicon photomultipliers (SiPMs) emerged as a viable alternative to vacuum-based
photomultipliers (PMTs) to sense scintillation and Cherenkov light signals in many kinds of particle
detectors, since they offer similar or higher efficiency in a smaller and more robust package, and
are not affected by magnetic fields. Their main drawback is the significantly higher dark count rate
(DCR), which, however, can be effectively mitigated by lowering the operating temperature. For
detectors that use liquid argon as a scintillator (such as the photon detection system of DUNE [1]
and the DarkSide experiment [2]), it is natural to take advantage of the cryogenic environment and
operate the SiPMs inside the liquid (87K). At such temperature, dark counts of thermal origin
become negligible, and those originated by tunneling dominate the DCR. Proper shaping of the
electric field and high silicon purity allow to reach DCR at the level of 0.01Hz/mm2 at cryogenic
temperatures [3, 4]. By connecting several SiPMs side by side, photosensitive surfaces of tens of
cm2 can then be realised, capable of resolving faint light signals down to single photons [5].

From the electrical point of view, with an approximation that will suffice for the rest of this
paper, the source impedance of PMTs and SiPMs is capacitive. But while for large area PMTs it
is just the parasitic capacitance of the readout electrode and its connections, typically of the order
of 10 pF or less, the source capacitance of SiPMs is given by the total capacitance of the cells it is
composed of, and is then directly proportional to the photosensitive surface, with typical values of
about 50 pF/mm2. When several SiPMs are connected in parallel (ganged) to instrument an area
of tens of cm2, a source capacitance of tens or hundreds of nF is to be expected. Despite having
similar gain and signal characteristics, large arrays of SiPMs have then a significantly lower source
impedance than large area PMTs. The importance of the parallel (current) noise of the amplifier
is reduced, while its series (voltage) noise becomes the leading contributor. Hence the need for a
front-end amplifier designed for the lowest possible series noise.
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Figure 1. Schematic of the amplifier. Q1 is a silicon-germanium heterojunction bipolar transistor (Infineon
BFP640). U2 is a fully differential operational amplifier (Texas Instruments THS4531). A typical choice of
component values is summarized in table 1.

The quest for low series noise is balanced by the need for low power consumption. If the SiPMs
and the amplifier are submerged in a cryogenic liquid, boiling should be avoided, since it would inter-
fere with the propagation of photons and their detection by the SiPMs. Another useful feature is the
ability to drive the (differential) transmission lines that connect the output of the circuit to the outside
world, i.e. the data acquisition systems located at room temperature, up to several meters away.

2 Description of the circuit

Figure 1 shows the schematic of the amplifier. The SiPM is a 2-terminal device: the choice of anode
or cathode readout affects the polarity of the bias voltage and of the current signals. The input of
the circuit is connected to the anode (cathode) of the SiPM, modeled by the source capacitance CD .
The cathode (anode) of the SiPM, not shown, is connected to a bias voltage generator, bypassed to
ground with a large value capacitor close to the SiPM. The SiPM connected at the input is modeled
by its capacitance CD , expected to range up to ∼100 nF for a ∼20 cm2 photosensitive area.

The circuit is based on a general and well known topology: a discrete transistor Q1 followed
by the operational amplifier U2, although the choice of a fully differential opamp results in an
unconventional feedback configuration, to be discussed in the following. Q1 is a silicon-germanium
heterojunction bipolar transistor (HBT), designed for radiofrequency applications. The presence
of germanium atoms in the base makes its band-gap smaller than that of the emitter, allows higher
doping levels, and results in a very small base spreading resistance, hence low series noise, and wide
bandwidth even at low bias currents (below 1mA). These characteristics also make most HBTs able
to work effectively at cryogenic temperatures, although in some cases with higher low frequency
noise [6–9]. Several cryogenic amplifiers are reported in literature that take full advantage of SiGe
HBTs [10–17]. The HBT we used in this work is the BFP640 from Infineon.

Due to the large value of CD , abrupt changes in the bias voltage of the SiPMs could easily
propagate to the input of the amplifier. The Schottky diode DI protects Q1 by guarding against
reverse bias of its base-emitter junction.

The second stage U2 is a fully differential operational amplifier. The device we used as U2 is
the THS4531 from Texas Instruments, with 27MHz differential gain-bandwidth product, 0.25mA
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supply current and rail to rail outputs at room temperature. Being designed in aBiCMOS technology,
its ability to operate at 77K is not to be taken for granted [18]. Band-gap narrowing, which can take
place in the highly doped emitter of standard (homojunction) bipolar transistors, could degrade the
current gain at low temperature and impair the performance. MOS transistors, on the contrary, are
generally able to work in cryogenic environments. But even for a fully CMOS opamp, the ability to
work at 77K might also depend on other parameters related to circuit design (stability of voltage or
current references, etc.), and needs in any case to be tested. Several samples of the THS4531 were
tested in liquid nitrogen, and were all observed to work, with supply current increased by about
50%, and bandwidth almost doubled, reaching a gain-bandwidth product of 50MHz.

The outputs of the circuit are connected to a data acquisition system (DAQ) through a differ-
ential transmission line of characteristic impedance RT or, equivalently, two lines of characteristic
impedance RT/2. The termination is AC-coupled through CT to avoid DC current flowing in the
output lines. When the outputs of the THS4531 are terminated with high impedance (1MΩ), the
output dynamic range at 77K is still almost rail to rail, although a small oscillation with a frequency
of about 20MHz was observed. The frequency of the oscillation does not appear to depend on
the loop gain of the amplifier. It could be related with the compensation of the output stages of
the opamp, which operate at unity gain. A complete study of this behaviour cannot be performed
without a detailed description of the THS4531. The oscillation disappears when the outputs are AC-
terminated with 50Ω, since in this case the loop gain of the rail-to-rail output stage is reduced; but in
this case we observed the output dynamic range to be limited to about ±1 V . The best compromise
was then to couple the 50Ω termination above a few MHz, by choosing RT =100Ω, CT =330 pF.
This proved to be effective in suppressing the aforementioned oscillation and preventing reflections
in the output lines even when long cables (up to 12m) were used, while at the same time limiting
the load at the output of the amplifier, allowing it to work with the wide dynamic range it shows on
a high impedance load. This remains true as long as the timescale of the signals is larger than their
propagation time on the output lines, of the order of tens of ns.

The signal from the SiPM can be modeled as a current pulse ID(t) with a fast rise (≤10 ns) and
a slower recovery (τD ∼ 100 ns or larger). Let us now assumeU2 to be ideal, with infinite open-loop
gain and bandwidth, and let us neglect RI . The gain block made of Q1 and U2 can be seen as a
single high-gain opamp with (negative) feedback provided by RF and CF . If CF is small enough
(CF RF < τD), there is no significant integration of the SiPM signals, and the transimpedance closed
loop gain is equal to RF . Similarly, RI can be considered “small enough” if there is no integration
at the input node, that is for CDRI < τD . Under these assumptions, the differential signal across the
outputs is simply given byVO(t) = −2RF ID(t). In most of the measurements presented in this paper,
weworkedwithoutCF , andwith RI = 1Ω, so the assumption to neglect themhere is indeed justified.

The DC voltage at the non-inverting output of U2 is the VBE of Q1, around 0.6V at room
temperature, 1V at 77K. The other output ofU2 is atVCM −VBE , whereVCM is the voltage applied
at the common-mode input of U2. VCM can be chosen to maximize the output dynamic range, the
natural choice being halfway between the power supplies of U2. The purpose of RL , CL is to filter
high frequency noise and disturbances from VCC . Let us neglect the voltage drop across RL . At
DC, the inverting input of U2 is held at a fixed voltage by the divider made by RP3 and RP4. When
the feedback loop is closed, this sets the voltage at the collector of Q1. If RP3 = RP4, and neglecting
RL , the collector of Q1 is at VCC/2. The current through RP1 is then VCC/2RP1, while the bias
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current of Q1 is

IC =
VCC

2

(
1

RP1
−

1
RP2

)
(2.1)

where clearly RP2 needs to be larger than RP1. Table 1 lists the typical values of the components used
in themeasurements throughout the paper, unless specified otherwise. WithVCC = 3V, RP1 = 3 kΩ,
RP2 = RP3 = RP4 = 16 kΩ, the VCE of Q1 is 1.5V and its bias current is approximately 400 µA.
Since RL = 510Ω gives a voltage drop of about 200mV, IC is actually 370 µA.

Let us neglect RP6 and CP6 for now. The role of RP2 and RP5, which is AC coupled through
CP5, is to make the inputs of U2 as symmetrical as possible. In particular, RP2 = RP4, while RP5

is chosen so that RP3 ‖ RP5 = RP1. CP5 is as large as possible, compatibly with the requirement
to work at cryogenic temperature, which led us to choose C0G (NP0) ceramic capacitors. In case
larger values are needed, solid tantalum capacitors could also be used [19]. This arrangement
improves substantially the capability of the circuit to reject disturbances from the power supply
VCC , which is then limited only by the resistor precision (typically to about 40 dB for 1% resistors).
With CP5 = 100 nF, RP5 = 3.69 kΩ (obtained as 3.3 kΩ in series with 390Ω), the rejection is
effective starting from a few hundred Hz. At high frequency, above about 1MHz, the inverting
input of U2 goes to ground through RP6 = 100Ω and CP6 = 2.2 nF. This is done to prevent a
parasitic capacitance across the inputs of U2 from feeding a part of the signal from the collector of
Q1 to the inverting input of U2, which would result in an additional pole in the loop gain, leading
to a reduction of the available bandwidth. RP6 and CP6 break the symmetry between the inputs
of U2, but in this frequency range VCC is effectively bypassed to ground by RL and CL = 100 nF,
eliminating disturbances altogether.

Table 1. Choice of component values for the schematic of figure 1. With VCC = 3V, VEE = −1V, the input
transistor is biased with IC = 370 µA. The “-” stands for “not present”. Unless otherwise noted, these are
the values used in the measurements presented in this paper.

Q1 BFP640
U2 THS4531
DI SB01-15C
RI 1Ω
RF 1.2 kΩ
CF –
RB –
CB –

RO1 50Ω
RO2 50Ω

RL 510Ω
CL 100 nF

RP1 3 kΩ
RP2 16 kΩ
RP3 16 kΩ
RP4 16 kΩ
RP5 3.3 kΩ + 390Ω
CP5 100 nF
RP6 100Ω
CP6 2.2 nF

3 Loop stability and bandwidth

TransistorQ1 is operated at gainG1=−gmRP, where gm is its transconductance and RP=RP1 ‖ RP2

is the load impedance at the collector. We neglect poles due to stray capacitances at the collector of
Q1, which would be in parallel with RP. We also neglect the capacitances of Q1, which are all well
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Figure 2. Model of the fully differential operational amplifier U2.

below 1 pF (CBC , which is multiplied by the Miller factor, is 0.08 pF according to the datasheet).
Since gm = IC/VT , where IC is the collector current and VT = kT/q, where k is the Boltzmann
constant and q is the elementary charge, the transconductance of Q1 at a given IC is larger at 77K
by a factor ∼ 4 with respect to room temperature. With the values reported in table 1, G1 = 36 at
room temperature, which becomes G1 = 135 at 77K.

The stability of the feedback loop can be analyzed in the domain of the complex frequency s.
Let us first consider the frequency response of U2. A fully differential amplifier can be modeled
with the schematic shown in figure 2. The input stage is a voltage-controlled current generator
with transconductance gd. It rejects common mode signals at the input and generates a current
proportional to the differential input voltage Vi+ − Vi−. If we denote the load impedance of the two
branches with Z+ and Z−, as noted in the schematic, the differential gain is given by

Vo+ − Vo−

Vi+ − Vi−
= gd (Z+ + Z−) , (3.1)

while the common mode gain is given by

Vo+ + Vo−

Vi+ − Vi−
= gd (Z+ − Z−) . (3.2)

In case of perfect matching (Z+ = Z− = Z) the differential gain becomes 2gdZ and the common
mode gain vanishes. The role of the common mode current generators with transconductance
gc is then just to fix the output common mode voltage to be equal to VCM . Their bandwidth is
unimportant, as long as VCM is constant. If matching is not perfect, these generators also help in
suppressing the residual common mode gain.

Let us assume to work in perfect matching. The load impedance Z gives the dominant pole of
the opamp: we can define A2 and τ2 so that 2gdZ = A2/(1 + sτ2). In reality there will be at least
another pole at higher frequency, for instance due to the output buffers, with time constant η2. The
differential gain can then be modeled as

Vo+ − Vo−

Vi+ − Vi−
= G2(s) =

A2
1 + sτ2

1
1 + sη2

'
A2
sτ2

1
1 + sη2

. (3.3)
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Assuming U2 to be unity-gain stable, and not overcompensated, the frequency of the second pole
corresponds to the gain-bandwidth product of the amplifier, that is the frequency where |G2(s)| ' 1.
The gain-bandwidth product of the THS4531 is about 27MHz at room temperature and about
50MHz at 77K, which give η2 ∼ 5.9 ns and η2 ∼ 3.2 ns respectively.

Typically the feedback loop in a fully differential opamp is closed on both sides: between Vo+

and Vi− and between Vo− and Vi+, in a perfectly symmetrical configuration. In the circuit described
here, the feedback loop includes the input transistor Q1, inherently single-ended, and therefore
involves only one of the outputs. This implies that the feedback factor is halved, and is given by

β(s) =
gmRP

2
ZI

ZF + ZI
, (3.4)

where ZI = RI + 1/sCD and ZF = RF ‖ 1/sCF . (Note that, since β(s) is halved, bandwidth will be
halved as well, compared to the case where feedback is applied symmetrically on both branches.)
The loop gain is given by

T(s)=−G2(s)β(s)=−
A2
sτ2

1
1+sη2

[
gmRP

2
1+s (CF RF+CDRI )+s2CF RFCDRI

s(CDRF+CDRI+CF RF )+s2CF RFCDRI

]
. (3.5)

It is clear that if both RI and CF are zero, the last term reduces to a pole at the origin, and the
loop gain is unstable. Either RI or CF need to be present to compensate one of the poles. At
the same time, as already discussed, their value should not be too large to avoid integration of the
SiPM signals. The presence of both CF and RI gives the terms in s2, that become dominant at
high frequency. In principle, the presence of RI is sufficient: indeed in the measurements presented
here, CF was not used, see table 1. Setting CF = 0 simplifies the expression to

T(s) = −
A2
sτ2

1
1 + sη2

[
gmRP

2
1 + sCDRI

sCD (RF + RI )

]
. (3.6)

The expression has three poles and one zero. If CDRI > η2, which is true with the choice of
components in table 1 and CD above 10 nF, the zero compensates the pole due to CD(RF + RI )

before the frequency of the third pole is reached. For smaller values of CD , the value of RI needs
to be increased, for instance to 5.1Ω. The condition for stability is then for the magnitude of the
loop to be below unity before reaching the frequency of the pole due to η2, which is the bandwidth
limit of U2. Since in eq. (3.3) we assumed |G2(s = 1/η2)| ' 1, and using the fact that RF � RI ,
this condition is satisfied if

β′ =
gmRP

2
RI

RF
< 1. (3.7)

In other words, the amplifier is stable if the attenuation of the signal fed from ouput of U2 back to
the input of Q1 is larger than the gain |G1 | = gmRP provided by the first stage. The bandwidth of the
full circuit is the frequency where |T(s)| = 1, and coincides with the bandwidth of U2 multiplied by
β′. Or, to see it differently, the gain-bandwidth product of the gain block composed by Q1 and U2 is
G1 times the gain-bandwidth product of U2, and gives 6.7GHz at 77K. The closed loop bandwidth
of the circuit is then obtained by dividing this by 2RF/RI . With the values of table 1, eq. (3.7)
is well satisfied, since β′ = 1/18 at 77K. The validity of the calculations above was checked by
increasing the value of RI to 5.1 Ω. In this case β′ = 0.3. Since the gain-bandwidth product of
the THS4531 at 77K was measured to be close to 50MHz, the bandwidth of the full circuit with

– 6 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
1
0
0
8

Figure 3. Edges of the differential output signals for β′ = 0.3, driving 12m output cables. The horizontal
scale is 0.2 µs/div, the vertical scale is 20mV/div.

RI = 5.1Ω is expected to be about 15MHz. A 10% to 90% risetime of 23 ns was indeed observed
with 2m long output cables, in good agreement with the expected bandwidth. If the length of the
output cables is increased to 12m, the edges of the two outputs are just slightly deteriorated to
26–27 ns, as shown in figure 3.

There is another possible source of instability of the circuit, which is not related with the entire
feedback loop discussed above, but rather with self-oscillations of Q1. Silicon-germanium HBTs
are designed for radiofrequency applications, and they exhibit bandwidth in the tens or hundreds of
GHz when they are biased with typical currents of tens of mA. When biased at lower currents, as in
our case, the bandwidth reduces but is still in the GHz range. Parasitic inductance and capacitance
in the layout of the circuit board can introduce unwanted resonances, which can become critical
at cryogenic temperature, where the transconductance is largest. A parasitic oscillation of Q1 can
appear at the output of the circuit as an oscillation at lower frequency, due to the interplay between the
high frequency oscillation ofQ1 and the rest of the circuit. To avoid this, the followingmeasureswere
found to be effective: minimizing the stray inductance at the emitter, by connecting it to the ground
plane of the board with very short traces and several vias; adding a small resistor in series with the
base, a role that is already filled by RI ; adding the series combination of a capacitor (∼nF) and resistor
(a few Ω) between the base and ground, close to the base, which are CB and RB in the schematic of
figure 1. RI , RB and CB can also help in achieving loop stability in case the SiPM or its connecting
wires have an inductive component, which would appear in series with CD . Although they are
foreseen in the schematic of figure 1, RB and CB were not always used, and do not appear in table 1.
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4 Noise

The noise of U2 is referred to the base of Q1 by dividing it by the gain of the first stage G1. With the
component values shown in table 1, G1 = 36 at room temperature and G1 = 135 at 77K, making
the noise of U2 negligible. The series noise of the amplifier is then uniquely determined by Q1 and
RI . The white component is given by

e2
n =

2kT
gm
+ 4kT RBB′ + 4kT RI, (4.1)

where k is the Boltzmann constant, T is the temperature, gm and RBB′ are the transconductance and
the base spreading resistance of Q1. The first and last term of eq. (4.1) can easily be calculated,
while the second is harder to determine. The value of RBB′ for a given HBT at room temperature, if
not explicitly listed in the datasheet, can be extracted from the quoted noise figure, and is typically
a few Ω at currents of 1mA and above. Its value, however, may be different for currents in the
hundred µA range, and may depend on temperature. We accounted for such dependence with a first
order expansion in powers of 1/IC :

RBB′(IC) = R∗BB′ +
α

IC
(4.2)

where R∗BB′ is the value at high collector currents, and α accounts for a possible increase of RBB′

at low values of IC . Both R∗BB′ and α can be expected to depend on temperature. By using (4.2),
and since gm = qIC/kT , where q is the elementary charge, eq. (4.1) can be rearranged as

e2
n =

(
2k2T2

q
+ 4kTα

)
1
IC
+ 4kT

(
R∗BB′ + RI

)
. (4.3)

The sum is composed of four terms, grouped in pairs. Measurements at different values of IC allow
to disentangle the first and second from the third and fourth. The first term, coming from the gm
of Q1, has the strongest temperature dependence. We will show that, in our measurements, the
first term dominates over the second at room temperature. At cryogenic temperature, the relative
importance of the second term becomes larger, and we used eq. (4.3) to determine the values of
R∗BB′ and α from the measured noise spectra.

The low frequency noise of transistors at cryogenic temperature depends strongly on the
presence of impurities in the band gap, and, being Q1 a heterojunction device, at the interface
between the different semiconductors. It is device-dependent, and possibly also batch-dependent.
The relative weight of the low frequency contribution in affecting the signal-to-noise ratio depends
on the bandwidth of interest. For a typical application that needs to detect scintillation light, the
lowest frequency of interest can be associated with the scintillation time constant, a few µs in the
case of liquid argon, corresponding to a few tens of kHz. The noise contributions below the lowest
frequency of interest can often be filtered out, and their weight reduced.

The current (parallel) noise is due to the base current of Q1 and to the thermal noise of RF .
The base current of Q1 is expected below a few µA, and RF = 1.2 kΩ. Any base current below
100 µA and feedback resistors above 100Ω give a white current noise below 10 pA/

√
Hz. For large

values of CD , and for signal frequencies above the kHz range, this contribution is negligible.
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Figure 4. Setup for noise measurements. All component values are those in table 1, except where specified.
The bias current of Q1 was changed by using RP1 = 6.8 kΩ, 4.7 kΩ, 3 kΩ, 2.4 kΩ, giving IC = 120, 210,
370, 480 µA.

The noise spectra were measured in the configuration shown in figure 4. The amplifier was
operated at a differential gain close to 900 (RF = 2.35 kΩ, RI = 5.1Ω). The input node, before
RI , was connected to ground through the series connection of a small 0.25Ω resistor and a large
capacitance, composed of a 470 µF tantalum capacitor at room temperature, connected to the input
with a 20 cm cable, in parallel with 100 nF C0G and 10 µF X7R ceramic capacitors at cold. The
differential output of the circuit was converted to single-ended on a second stage amplifier based
on a AD8055 with gain 20, closed-loop bandwidth 10MHz, and measured with a Rohde&Schwarz
FSV4 spectrum analyzer. To characterize the transfer function, a test signal from an Agilent 33250A
(white noise, 100mV peak to peak, bandwidth 80MHz) was injected through a 50 + 47Ω source
impedance across the 0.25Ω resistor, resulting in a 0.25mV peak to peak signal at the input node
of the circuit. The source was then disconnected to measure the output noise spectrum, which was
then divided by the measured transfer function.

Figure 5 shows the results at room temperature (300K) and liquid nitrogen (77K) for different
values of the collector current IC . (Each spectrum was obtained by concatenating several measure-
ments taken on different time scales.) The white noise depends on IC as expected. At larger values
of IC the improvement becomes less evident, due to the presence of the constant terms in eq. (4.3).
The low frequency part of the spectra does not depend on IC , and is slightly more pronounced at
77K. The curves show lorentzian “bounces” below 10 kHz. The squared spectra were interpolated
with the sum of five lorentzian functions and a constant (white) term:

N(ω) = A(ω) + e2
n =

5∑
i=1

Ai

1 + ω2τ2
i

+ e2
n (4.4)

Each lorentzian term is expected to be due to the presence of a specific class of generation-
recombination centers (traps) with a definite time constant τi [20, 21]. The most prominent are
found at τi = 100 µs, corresponding to 1.5 kHz, and at about 100Hz, accounting for the rise at the
lower end of the spectrum. The resulting curve for the spectrum at 370 µA is shown with a dotted
black line in figure 5.
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Figure 5. Noise spectra measured for different values of the collector current IC at room temperature (top)
and liquid nitrogen (bottom). At 77K, the spectra at 370 µA and 480 µA are almost indistinguishable. The
black dotted curve shows the interpolation of the data at 77K, 370 µA.

From the fitting curves, the value of the white component e2
n was extracted. Figure 6 gives the

squared white noise e2
n as a function of 1/IC . From eq. (4.3), a linear fit of the data allows to extract

the unknown parameters R∗BB′ and α. The intercept corresponds to the condition 1/IC → 0, where
the first two terms in eq. (4.3) vanish. From the intercept values, which are 0.203 nV2/Hz at 300K
and 0.064 nV2/Hz at 77K, the values of R∗BB′ + RI can be determined. Knowing that RI = 5.1 Ω,
we obtain R∗BB′ ∼ 7 Ω at 300K and R∗BB′ ∼ 10 Ω at 77K. The value at 300K is compatible with
the value extracted from the noise figure in the BFP640 datasheet.

The slope of the fitting line at 300K is 239 µA(nV)2/Hz. It is about 10% larger than 2k2T2/q =
214 µA(nV)2/Hz. About half of this excess noise at room temperature can be explained by the noise
of the second stage U2: the THS4531 has a white voltage noise of 10 nV/

√
Hz at room temperature,

which divided by G1 = 36 gives about 0.3 nV/
√
Hz at the input. The contribution of the second

term of eq. (4.3) at 300K is then small, and does not allow a precise determination of α. In other
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Figure 6. Squared white noise extracted from the spectra of figure 5, plotted as a function of the inverse
collector current of Q1.

words, the value of RBB′ at room temperature is small enough not to give sizeable contributions to
the total noise of the circuit.

At 77K, the slope of the fitting curve gives 32.7 µA(nV)2/Hz at 77K, which is twice as large
as what is expected from the first term of eq. (4.3) alone, 2k2T2/q = 14.1 µA(nV)2/Hz. The noise
of the THS4531 was observed to decrease to about 3.3 nV/

√
Hz at 77K, while the gain of the

first stage increases to G1 = 135 at 77K, making it completely negligible. Since the circuit was
submerged in liquid nitrogen, and the power consumption is low, we ruled out the possibility thatQ1

was operating at a temperature significantly higher than 77K. The difference gives α = 4380 µAΩ.
The estimated value of RBB′ is then 18, 22, 30, 46Ω at IC = 480, 370, 210, 120 µA respectively.

Even though partially contributed by RBB′, the total white noise of the amplifier is remarkably
low, considered the low power consumption. In all the measurements presented in the following
sections, we worked at 370 µA, with a white noise of 0.4 nV/

√
Hz. As can be clearly seen in figure 5,

working with larger currents than those considered did not give any advantage at 77K.

5 Performance in reading out SiPMs

Given the measured noise spectra, we address the determination of the signal-to-noise ratio in the
readout of actual SiPMs. Figure 7 shows an example of a SiPM read out at 77K (liquid nitrogen)
with the amplifier described in this paper. The SiPM has an area of 0.96 cm2, a total capacitance
of 4.8 nF, and a recovery time τD ' 800 ns. It was biased at 24V (3V overvoltage) by setting the
cathode voltage to 25V, since the anode, connected to the input of the circuit, was at 1V. The gain
of the SiPM at 3V overvoltage was about 2.4 × 106. It was illuminated with a pulsed LED through
an optical fiber, and the light intensity was adjusted so that a few photoelectrons were detected on
each pulse. Figure 7 shows excellent separation between signals corresponding to different numbers
of photoelectrons.
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Figure 7. Light signals from a pulsed LED, detected by a SiPM, read out with the amplifier described in this
paper. The horizontal scale is 500 ns/div, the vertical scale is 4mV/div.

To determine the signal-to-noise ratio in the case of larger photosensitive area, we added
different values of capacitance at the input node: 10 nF, 32 nF and 79 nF. Considering as reference
a SiPM capacitance of 50 pF/mm2, these values correspond to roughly 2 cm2, 6.4 cm2 and 15.8 cm2

respectively, to be added to the 0.96 cm2 of the device. For the first point at 10 nF, the value of RI

was increased from 1Ω to 5.1Ω to guarantee stability of the loop gain. A warm second stage based
on a OP27 opamp, with bandwidth 300 kHz and gain 23.5, was used to convert the differential
signals to single ended. The bandwidth was further filtered at 1MHz on the oscilloscope. The
signal-to-noise (S/N) for single photoelectron signals was determined by dividing the observed
signal amplitude by the RMS noise of the baseline. The resulting data points are shown in figure 8
as “Measured SiPM 1”. The data are in reasonable agreement with the expected behaviour, which is
described by the curve labelled “LP 300 kHz [τD = 800 ns]”. The curve was obtained by calculating
the expected signal amplitude for single photoelectron signals from a SiPM with gain 2.4 × 106,
τD = 800 ns, filtered with a single-pole low-pass at 300 kHz, and dividing it by the RMS noise
obtained by integrating numerically from 100Hz to 1MHz the noise spectrum of the amplifier,
low-pass filtered at 300 kHz.

The same measurement was repeated for a different device, with an area of 1.7mm2, a capaci-
tance of 35 pF, and a shorter recovery time τD ' 100 ns. The gain of the device at 3V overvoltage
is expected to be about 1.7 × 106, hence it was operated at a slightly higher overvoltage, adjusted
to obtain a gain close to 2.4 × 106. As done in the previous case, capacitances of 10 nF, 32 nF and
79 nF were added in parallel with the SiPM to simulate a larger total area. The measured S/N is
shown in figure 8 as “Measured SiPM 2”. Again, the data are in reasonable agreement with the
expected values, calculated for a 300 kHz low pass filter, labelled as “LP 300 kHz [τD = 100 ns]”.

By comparing the two sets of measurements, it appears that a shorter recovery time τD gives
a better S/N by almost a factor two, although the difference becomes smaller at higher values of
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Figure 8. Signal-to-noise ratio for single photoelectron signals from two SiPMs operated at a gain of
2.4×106. The SiPMs differ in the values of the recovery time τD . The measured data at different capacitance
values for two devices, labelled “Measured SiPM 1” and “Measured SiPM 2”, are in reasonable agreement
with the expected curves “LP 300 kHz”, calculated from the gain and τD of the devices and the measured
noise spectra in 5, using just a low pass filter at 300 kHz. The curves can also be compared with the expected
“Optimum” S/N , obtained by integrating (5.5) numerically.

CD . This is due to the larger weight of the low frequency noise components for larger values of τD .
In many applications, however, a relatively long recovery time is beneficial for the suppression of
afterpulses. In any case, even at larger values of τD , the measurements show a good S/N , always
above 4 up to 100 nF capacitance, which would correspond to a photosensitive surface of 20 cm2

for a 50 pF/mm2 SiPMs.
It could be argued that the 300 kHz low pass filter applied in these measurements is not the

optimal one, and the S/N could improve with better filtering algorithms, to be applied offline. From
the theory of optimal filtering of signals fromparticle detectors [22–24], the best signal-to-noise ratio
that can be achieved for any amplitude measurement is given by (“OF” stands for optimum filter):(

S
N

)2

OF
=

1
2π

∫ ∞

−∞

��ṼO(ω)
��2

N(ω)
dω (5.1)

where ṼO(ω) is the Fourier transform of the output signal VO(t), and N(ω) is the output noise spec-
tral density. Any other filter or processing algorithm is bound to give a sub-optimal signal-to-noise
ratio. The signal of a single SiPM cell, corresponding to a single photoelectron, can be described
by a current step with an exponential decay, carrying a total charge Q. The differential signal at the
output of the amplifier can then be expressed as

VO(t) = 2RF ID(t) = 2RF
Q
τD

e−
t

τD . (5.2)

To match the gain of the SiPMs we measured, we set Q = 2.4 × 106 q, where q is the elementary
charge, and we consider two values for τD , 100 ns and 800 ns. Here and in the following we neglect
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the integration at the input node, by considering RI = 0, and neglect the finite bandwidth of the
amplifier. (Even if we wanted to consider these effects in eq. (5.2), they would affect the following
expression (5.4) for the output noise in the same way. They would therefore cancel out from the
integrand of eq. (5.5).) The magnitude of the Fourier transform of the output signal is��ṼO(ω)

��2 = ���� 2RFQ
1 + iωτD

����2 = 4R2
FQ2

1 + ω2τ2
D

. (5.3)

The output noise spectral density, neglecting parallel contributions, is given by

NO(ω) =

����2 (ZF + ZI )

ZI

����2 (
A(ω) + e2

n

)
= |2 + 2iωCDRF |

2
(
A(ω) + e2

n

)
=

(
4 + 4ω2C2

DR2
F

) (
A(ω) + e2

n

)
(5.4)

where we used ZF = RF and ZI = 1/sCD . The terms A(ω) and e2
n account for the low frequency

and white noise respectively, as expressed by eq. (4.4). The integral in eq. (5.1) becomes(
S
N

)2

OF
=

1
2π

∫ ∞

−∞

R2
FQ2(

1 + ω2τ2
D

) (
1 + ω2C2

DR2
F

) (
A(ω) + e2

n

) dω (5.5)

Neglecting the low frequency noise allows to calculate the integral analytically, but leads to an
overestimated result. We can instead take the actual noise spectrum, as shown in figure 5, and
evaluate the integral numerically. The resulting curves are shown in figure 8, labelled as “Opti-
mum” for the two values of τD . The dependence of the curves on τD is small at low values of
CD , and completely negligible for larger values of CD . The curves show that, with respect to the
measured S/N discussed previously, there is margin for improvement by up to factors of 3 − 4 if
better processing algorithms than a simple 300 kHz low pass filter were applied. In this case, a S/N
above 10 would be expected for SiPM capacitance up to 200 nF, corresponding to approximately
40 cm2, independently of the SiPM recovery time.

6 Conclusions

We presented a front-end amplifier designed to readout large arrays of SiPMs in cryogenic environ-
ments. Compared with similar amplifiers based only on operational amplifiers, the present design
gives lower noise at significantly lower power dissipation. The resulting gain-bandwidth product
is in the GHz range. The circuit topology offers high flexibility in compensating the loop gain,
which allows to obtain a signal rise time down to ∼ 20 ns with large values of input capacitance,
up to ∼ 100 nF. The conditions for close-loop stability were discussed in detail. The circuit shows
input-referred white voltage noise of 0.4 nV/

√
Hz at 77K, at a power consumption of 2.5mW. The

base spreading resistance of the input transistor was determined from white noise measurements,
and was observed to depend on its bias current. At low frequency, noise is also contributed by
lorentzian terms. The amplifier allowed to measure S/N > 4 for single photoelectron signals with
input capacitances up to 100 nF, corresponding to a total SiPM surface of about 20 cm2. Further
improvements would derive from applying an optimum filtering algorithm, with the expected ca-
pability to readout a 100 nF photosensitive surface with S/N ' 20, independently of the SiPM
recovery time.
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