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Internal region wavefunction

• Wave function for Internal Region

• Evaluation of the collision matrix is made by matching logarithmic derivatives of 
wavefunction of internal region to those of outgoing wavefunctions in channels 

• Collision matrix is 

• where
• The R-matrix is the central quantity here:

• The EM radiation channels can be included on the same basis by perturbation 
theory (Lane and Thomas)
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Fission reaction rate theory in Liquid Drop model

Classical model : 
Transmission coefficient TF = 1 if E > VF , otherwise zero.
Hill and Wheeler (1953) gave quantal tunnelling version

Nuclear model:
Bohr and Wheeler  (1939) - many different possible states of intrinsic 
excitation as nucleus passes over barrier. 

The transmission coefficient is
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Aage Bohr Transition States

• Extended from Wheeler; largely 
speculative

• Bohr  speculated that these widely 
spaced ‘transition states’ at the 
barrier could influence the state of 
the splitting nucleus at scission point

• Explained angular distributions of 
fission products  (through K of 
transition state)

• Hence, concept of  ‘saddle-point 
channels’

• Distribution of fission widths



Internal region and channels in nuclear configuration space



Narrow Intermediate Structure in Fission cross-sections

• Discovered in resonance region by Migneco & Theobald and Paya et al (1968)



Effect on Fission transmission coefficient

TA , TB are transmission coefficients of inner and outer barriers separately
• This is the fission transmission coefficient of the Statistical Model:                                          
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Configuration Space: choice of channel boundary



Vibrational wave functions for Double well;
discrete states with real bdy.condn.at outer barrier



Formal exposition of Intermediate Structure

•
• Hamiltonian 

H = Hintrinsic + Hdef + Hcoup

• Solutions of intrinsic part for fixed deformation β0 denoted by   χμ•

• Solutions of deformation part are vibrational-type functions in the 
deformation variable β:

Φν(β)          (eigenvalues ε)

• Eigensolutions of H are expanded in basis states of H(int) +H(def):

Xλ = Σλ Cλ,μνχμΦν



Intermediate structure continued

• Two classes of basis states:
• Class I: with negligible vibrational amplitude in 2y well:     μ'νI‘
• Class II: main component of vibrational amplitude in 2y well:     μ´´νII´´

• Solve  Scrodinger eqn. for the Hamiltonian with the limited bases of the two 
classes. 

• The Hamiltonian matrix elements for the first basis are

<νIμ│ Hcoup│νI'μ'> = (εν(I)+Eμ)δν(I)μ,ν'(I)μ' + <μνI│ Hcoup│ μ'νI'>

This Hamiltonian can be diagonalized to give class-I eigenstates with wave function 
expansions

Xλ(I) = Σμν(I) < λI│ μνI>χμΦν(I)
• and eigenvalues Eλ(I)



Intermediate structure continued

• Similarly, for the class-II basis set:
The Hamiltonian matrix elements are

<νIIμ│ Hcoup│νII'μ'> = (εν(II)+Eμ)δν(II)μ,ν'(II)μ' + <μνII│ Hcoup│ μ'νII'>

and we diagonalize it to give the class-II eigenstates with wave function expansions

Xλ(II) = Σμν(II) < λII│ μνII>χμΦν(II)

and eigenvalues Eλ(II)



Properties of Class-I eigenstates.

• These contain the zero-phonon vibrational state Φ0 in their eigenfunctions. Hence, 
the ground state and lowest excited states of the Compound Nucleus are included 
in the class-I set.

• Maximum available excitation energy for constructing intrinsic states. Hence, large 
level density.

• Φ0 essential for CN component for reduced neutron width amplitude(for neutron 
emission leaving residual nucleus in ground state). Also for inelastic scattering.

• Primary radiative transitions to low-lying states.

• In fact, the class-I states have most of the characteristics of the CN states we see as 
neutron resonances, except that they have no reduced fission width.



Properties of Class-II eigenstates

• Class-II level density is much lower.

• No reduced neutron width ; cannot be excited by neutron bombardment.

• From the higher class-II vibration components,  significant amplitude at the outer 
barrier and hence fission widths.

• Lowest state in spectrum is spontaneously fissioning isomer. Radiation from higher 
class-II states terminates here.  No "cross-over" radiation.



Final Diagonalization of Hamiltonian

• Full  Hamiltonian:

• E(λI)                  0                       0     ……    │  <λI| Hc |λII>    <λI| Hc |λ’II>   ……….
0 E(λ’ I)                 0     …….   │  <λ’I| Hc |λII>   <λ’I| Hc |λ’II>  ............
0                    0                  E(λ”I)   . ..    │  <λ”I| Hc |λII>   <λ”I| Hc |λ’II>  ……..  
0                     0                      0     ……   │
: │
0                     0                      0                │   <λ””I| Hc |λII> …….

▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬▬▬
<λI| Hc |λII>   <λ’I| Hc |λII>   <λ”I| Hc |λII>  .. │          E(λII)                   0                  0 
<λI| Hc |λ’II>  <λ’I| Hc |λ’II>   <λ”I| Hc |λ”II>  │            0                    E(λ’II)              0 
.  …………………………………….……………..    │ 0                         0            E(λ”II)

:                    :                      :                  │

Matrix element core      <νI |Hc| νII >     is very small



Moderately weak coupling:

• The mixing of a single class-II state with many class-I level can be solved exactly. 
Γλ(II), C γ2

λ(II), F

2πγ2
λ,F /DI = ———————————

(Eλ(II) - Eλ)2 + (½Γλ(II), C)2

The “coupling width” across the inner barrier A:

which we have identified with the transmission coefficient across the inner barrier TA. 

Coupling to the fission continuum
• Lorentzian eqn. above is for R-matrix reduced widths. Fission widths of 

resonances can be different owing to coupling to the continuum.
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Coupling to the fission continuum

• Lorentz profile with width             is for  reduced fission widths of R-matrix  states.  

• The coupling with the fission continuum has now to be included to obtain profile 
for the fission widths of the fine structure resonances.

• If

R-matrix fission width profile approximates to intermediate resonance profile. 

If R-matrix fission widths                              appreciably overlap, solution of  R-matrix 
equations  not obvious.

Example:

II IIF Cλ λΓ Γ

22f f fPλ λγΓ =

II cλΓ



2-level, 2-channel cross-section
(neutron entrance channel, single fission channel)

2 Breit-Wigner  terms added (red and 
blue; total shown in green)

R-matrix calculation: note energy scale is 
same, cross-section scale increased x10
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S-matrix theory
Humblet and Rosenfeld, Nucl. Phys.26,529 (1961)

• S-matrix formalism expands the collision matrix about its poles in the complex 
energy field:

• The quantities G are effectively partial width amplitudes of the poles.  Note: they 
are complex.

• E  is the complex energy and the poles are at the complex energies

● Advantages: parameters of poles (e.g. pole width, partial width amplitudes) 
directly reflect characteristics  of resonances in cross- section

● Disadvantages: S-matrix theory is not unitary. 
Statistical distributions of partial widths change with strength function and 
penetration factors.
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Ti-48 + n 

R-matrix parameters
Eλ (keV)           Γλn (keV) 
17.8089             8.5714 
22.0862             0.792 
36.945               1.734

• S-matrix parameters
• E1 = 18.142 - i 4.544 keV, 
• G11 =√[9.697exp(i1.41π)] keV

• E2 = 21.8818 - i 0.1749 keV, 
• G21 =√[0.3626exp(i0.823π)] keV



Calculated cross-sections of Ti-48
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Averaging for different intermediate structure models
• Fission probability in different models. (σCN is compound nucleus formation cross-

section).                   /F F CNP σ σ=



Intermediate structure averaging

Width fluctuations to be considered



General formula for fission widths of resonances

• Fine structure fission widths

with remaining class-II fission width
[1 - Γλ(II), μ'ν(II)/ (Γλ(II), μ'ν(II+ Γλ(II), C)] Γλ(II), μ'ν(II)

(this is component for transition 
state μ’νII)

• This formula is approximate. 
• General  prescription:

Use R-matrix parameters  for  
Use General formula  for 
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• Red : S-matrix pole fission widths   
Green: from hypothesis formula;
Purple :  R-matrix fission widths. 
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Class-II fission width < coupling width
Red – S-matrix pole width (from residues)
Green – Lorentzian model

Blue – S-matrix pole width
Purple – R-matrix fission widths
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Class-II fission width > coupling width
Blue – S-matrix pole width
Purple – R-matrix fission widths

Red – S-matrix pole width (from residues)
Green – Lorentzian model
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Ratio of model average to true 
(numerical) average
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Conclusions

• R-matrix  theory is general and flexible enough 
that, with suitable insight  and statistical 
methods, it can be used for highly complex  
phenomena such as fission.

• With R-matrix theory, fine structure, intermediate 
and vibrational resonances can all be treated. R-
matrix theory is at the basis of the AVXSF code

• Conversion  to S-matrix parameters reveals new 
phenomena and can facilitate averaging 
processes. More work is required to understand 
systematics of S-matrix parameters



Neutron width behaviour
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Figure 17. Example of entrance channel width behaviour for ΓIIC = 4. Rhomboids (blue) represent the central pole, squares (red) the next neighbour, triangles (green) the 
second neighbour, crosses (purple) third neighbour, crosses (pale blue) the Lorentzian model for the central pole.



Other topics (1): Vibrational
resonances

• Penetration function• Quasi-tertiary well 
effects in outer barrier
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Vibrational resonance in cross-section 
of  U-238 + n

• Blue – exptl. data; Red – inverse harmonic 
barrier; Green – barrier with quasi-well
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Other topic (2) Example of R- to S-matrix conversion

• Table of R-matrix and corresponding S-matrix parameters
• Eλ Гλa Гλb El - Eλ Гl b Gla Glbb q
• (eV)          (meV)         (meV)        (meV)         (meV)            (eV)
• 44.3017        0.109           263.9              63               194       .00291-i.00353   0.951          
• 45.2729        0.041           329.9             101              238     -.00168+i.00332   1.007
• 46.2368        0.134           413.4             112              298      .00498- i.00440   1.089
• 47.1917       0.021           513.2             151              380      .00226- i.00490   1.223
• 48.1365       0.101           618.4             211              505     -.00751+i.00545   1.503
• 49.0718       4.10-7 704.1             317              722     -.00150+i.01559   2.438
• 50.0009       0.207           738.4               10             2038    -.00660 -i.05186   4.454
• 50.9300       7.10-6 705.8            -322              730      .00026 +i.0185    2.482
• 51.8650       9.10-6 620.9            -257              509      .00334+i.00767   1.514
• 52.8096       0.057           516.0            -153              383      .00457+i.00532   1.229
• 53.7642       0.188           415.9            -113              299      .00615+i.00450   1.091
• 54.7279       6.10-6 331.8             -84               239     -.00007 -i.00532  1.008 
• 55.6990       0.039           265.4              -64              195     -.00139 -i.00330   0.953
• 56.6757       0.077           214.2              -49              160     -.00192 -i.00333   0.910



Comparison of calculated  cross-sections

• Red – R-matrix; Blue – S-matrix
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Other Topic (3) Inelastic scattering; R-matrix treatment

• Other uncertainties in average fission cross-section calculations
• a) Compound nucleus formation cross-section
• b) Strength functions for inelastic scattering
• Estimates for above made from optical model, or, in case of main inelastic 

terms, from its coupled channel extension. 
• The latter produces enhancements which are interpreted as “direct 

inelastic scattering”
• An R-matrix approach may produce a fresh insight into this



Basis states: single-particle+target rotational state

• No coupling term
• d5/2 x 2+ g7/2x4+   s1/2x0+      d3/2x2+

• “Optical model” spreading
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Effect of coupling term

• With “optical model” mixing
• Green – el. scattg.; blue & purple 

–inel. to 2+; red – inel. to 4+

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3



Basics of R-matrix theory

• OUTLINE
• Wave function for plane wave travelling with velocity v:

plane wave  in z dirn.                 expansion in polar co-or. system     
k (= is wave no. of neutron-target system, Ylm are spherical harmonics.
For neutrons, asymptotic forms of incoming, outgoing waves at large distances r are

Nuclear forces in compound system of target + projectile  change amplitudes of 
ingoing waves and  produce outgoing waves of different kinds.

Amplitudes of outgoing waves in this system are denoted by   collision matrix element

1/2
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Wavefunctions in regions of configuration space

• Nuclear forces in Internal Region cause outgoing waves in other channels c’. 
Amplitudes denoted by collision matrix elements Ucc’ , (c for entrance). 

• External region  wavefunction :

I and O are incoming and outgoing wave functions generalized to specific 
channels by incorporating intrinsic excitation and angular momentum couplings   

• The cross-section is

2

' | 'cc ext plane cσ = Ψ −Ψ
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ext c cc c
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No nuclear interactions in Secondary Well;
channel boundary at inner saddle point

• Transmission coefficient • Shift and penetration factors



CN states in double well



Transforming R-matrix parameters to S-matrix parameters

• “Broad” class –II R-matrix state:
and 

Fine structure resonance fission widths 

Neutron widths  & resonance energies are close to class-I values.
• Remaining class-II fission strength is

[1 - Γλ(II),C/ Γλ(II),F] Γλ(II),F

contained in one broad pole (width ~ Γλ(II)F ) with weak neutron 
width (Γλ(II),C<Γλ(I),n>/ Γλ(II),F) underlying the Lorentzian group. 

Essentially, the relatively strong mixing of class-I and class-II wave 
functions in the R-matrix states is decoupled by their broad spreading 
into the fission continuum, and the fission widths of the quasi-class-I 
resonances are picked up by weak perturbation from the class-II state
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Averaging over Intermediate Structure

• Uniform picket fence model.

With no width fluctuations the average fission cross-section is:

TI is total class-I transmission coefficients ;
TA , TB are inner and outer barrier transmission coefficients, 

TF = TA TB / (TA + TB ) is the statistical fission transmission coefficient. 



Transforming R-matrix parameters to S-matrix parameters

• U and R matrices are extended into the complex energy field. S-matrix 
poles can be found analytically in certain cases or generally by numerical 
methods.

• 2-level case: analytic – as R-matrix levels become closer, poles repel each 
other in imaginary direction. Two broad R levels become a narrow 
resonance and a broad resonance.

• Too much overlap  in cross-sections of fissile nuclei to find good 
experimental examples. Therefore, we seek examples in multi- keV region 
of intermediate mass nuclei.



R-matrix Theory in the analysis of fission cross-sections 

 

SLIDE 2 

INTRODUCTION. 

First, I want to acknowledge my friends and colleagues, Patrick Talou of 
LANL and Olivier Bouland of Cadarache, my collaborators in the project on 
which this paper is based. 

Our aim was to provide a code, AVXSF, with analytical and predictive 
capability for calculating average fission cross-sections and was based on the 
soundest theoretical basis available and as little phenomenology as possible. 

For describing the underlying resonances from the properties, such as barrier 
height and penetrability, of the fissioning compound nucleus we based the 
code on R-matrix theory. The project resulted in a paper in 2013 on the fission 
cross-sections of a series of plutonium isotopes, and helped understand barrier 
height and pairing gap systematics. 

In this paper I propose to give an overview, partly historical, on the use of R-
matrix theory in fission. R- matrix theory has been an important tool in 
analysis of fission cross-sections since the early 1950s when measurements of 
the resonances in the cross-sections of fissile nuclei revealed that they were 
often very broad and quite asymmetric in shape. A formalism, such as R-
matrix, that was much more generalized than simple Breit-Wigner was 
required. 

This slide shows the topics I propose to cover 

SLIDE 3 

So how do we put fission into R-matrix theory? 

This is a schematic diagram of configuration space. Here on the left we have 
an incoming wave, the incident projectile, with a returning outgoing 
wave. At the centre is the combined system of projectile and target 
nucleus with binding energy available as excitation energy, which we 



call the internal nuclear region. The nuclear interactions within this 
modify the returning outgoing wave and create new waves in other 
channels (to the right) defined by various ejectiles and a residual 
nucleus in various states of internal excitation and angular momentum . 

In this picture the multiple combinations of fission products in different states 
of excitation and angular momentum and parity beyond the scission 
point are all defined as channels.  

However, this straightforward idea is confounded by observation of the 
statistical properties of resonances. Neutron widths vary widely from 
resonance to resonance - the Porter-Thomas distribution. Radiation 
widths are constant within experimental uncertainty.  This can be 
understood by the total radiation width being composed of a large 
number of primary transitions, each with an independent P-T 
distribution; the distribution therefore converges to a narrow Gaussion. 
The same argument should hold for fission widths. 

SLIDE 4 

Let us look now to the formal theory. At the top we show the wave-function of 
the internal region expanded over the basis R-matrix states Xλ  defined 
as the eigenstates of the full Hamiltonian with real, energy independent 
boundary conditions applied at the channel entrances. Matching at the 
channel entrances gives the central relation between the collision matrix 
and the R-matrix states, involving hard-sphere phase shifts, 
penetration, shift and boundary conditions (all diagonal matrices). The 
central quantity is the R-matrix, a typical element of which is shown at 
the bottom, featuring eigenvalue Eλ and reduced width amplitudes γλc 
(projections of the internal wave-function on the channel wave functions 
at the channel boundaries). 

 

SLIDE 5 

Let us look more closely at the fission process. Here we see the classical fission 
barrier in the collective variable defining deformation towards fission. 



Beyond the saddle point the nucleus becomes internally excited, unlike 
angular momentum and Coulomb barriers in the particle channels, and 
this why we have included the barrier and saddle point within the 
internal region. In their 1939 paper Bohr and Wheeler pointed out that 
the nucleus can deform over the barrier in one of possibly many states 
of internal excitation and these all need to be counted in evaluating the 
transmission coefficient ( which can be used in Hauser-Feshbach theory 
or to give an estimate of the fission width). Aage Bohr later recognized 
that these "transition states" were not simply a counting device but are 
widely enough separated to be able to stamp their own properties on the 
ultimate pattern of fission product division. 

SLIDE 6 

On the left is a table of possible barrier transition states (largely compiled by 
Wheeler) for an even nucleus with estimates of their excitation energy 
and their K, parity and total angular momentum numbers. With these 
Aage Bohr could explain photofission and neutron-induced fission 
product angular distributions through the K, J and M quantum 
numbers. 

What we realize from this is that the barrier transition state could be 
controlling the amplitudes of the fission products at the scission point 
and they are correlated; if the nucleus is constrained by energy to pass 
through only one or few transition states then the total fission widths 
will be governed by the amplitudes of the transition states in the wave 
function of the resonance state. Hence the wide distribution of fission 
widths. 

SLIDE 7. 

So this is the picture we now have of configuration space. The classic internal 
region is separated by a relatively nuclear interaction-free zone at the 
saddle point deformation from another interaction region at higher 
deformation with the fission product channels leading off from the 
latter. For application of R-matrix theory to fission we now place the 



channel entrances at the saddle point deformation, and this works well - 
the SAMMY code and other codes are based on this device. 

 

SLIDE 8. 

In the late 1960s a new chapter opened in the understanding of fission. From 
the neutron resonance point of view this was the discovery of narrow 
intermediate structure in fission cross-sections of fissionable actinide nuclides, 
originally in  Pu-240 (Geel) and Np-237 (Saclay).. The Pu-240 total cross-
section is shown above with resonances spaced at about 14eV, and the fission 
cross-section below with narrow clusters at intervals of about 700eV. 

This was the clinching proof for Strutinsky's theory that the fission barrier 
could be split owing to shell effects in deformed nuclei. 

SLIDE 9. 

The double-humped barrier is shown schematically here. Notice that while we 
still have  a region of strong nuclear interactions beyond the outer saddle that 
can knock things about a bit about but eventually still spits the system out as 
fission products, we also have an intermediate region in the secondary well 
where the available internal excitation energy is sufficient to regurgitate the 
system back into the primary well. This is the basis of Strutinsky's formula 
for the fission transmission coefficient for use in Hauser-Feshbach 
calculations, but is nowhere nearly sufficient to deal with sub-barrier or near-
barrier cross-sections. 

It is clear that, in general, we must place the fission channel boundaries at the 
outer barrier. 

SLIDE 10. 

Our new situation is shown in this version of configuration space, with the 
secondary well placed in our effective internal region.  

SLIDE 11. 



To develop this by R-matrix theory, we first consider discrete vibrational 
states within the double well potential (with suitable boundary conditions 
applied at the outer barrier deformation). 

There are clearly two classes, one class with near-zero amplitude in the 
secondary well (these include the zero-point state, which is essential to the 
overall ground state of the compound nucleus), and the other set with major 
significant amplitude in the secondary well. 

From these we can form two classes of R-matrix basis states, which are 
described in the following slides. 

SLIDE 12. 

SLIDE 13. 

SLIDE 14 

SLIDE 15. 

SLIDE 16 

SLIDE 17. 

This shows schematically the form of the matrix that has finally to be 
diagonalized to obtain the final R-matrix states. The matrix elements in the 
off-diagonal sub-matrices are small because they involve the overlap of class-I 
and class-II vibrational states. hence the coupling between class-I and class-II 
R-matrix states can be achieved by perturbation methods or the mixing of a 
single class-II state with a neighbouring group of class-I levels. 

SLIDE 18.  

The Lorentzian form of the fission widths of a group of final R-matrix levels 
can be demonstrated exactly. Notice that the width of the Lorentzian is the 
coupling width across the inner barrier, which can be related to the 
transmission coefficient across that barrier. 

 

 



SLIDE 19.  

We still have to couple to the continuum to obtain the collision matrix which 
gives, finally,  the cross-section. This can alter the profile of resonances 
dramatically. 

 

SLIDE 20. 

Take the case of two overlapping R-matrix states. On the left we see two R-
matrix levels with their parameters treated as a couple of Breit-Wigner 
resonances. On the right is the R-matrix calculation, giving a much narrower 
peak in the cross-section. 

SLIDE 21. 

We can understand this by casting the R-matrix parameters into S-matrix 
theory, shown on this slide. In this theory,  developed by Humblet and 
Rosenfeld in the early 1960s, the S-matrix, which is essentially the collision 
matrix, is expanded directly in the poles that occur in the complex energy 
field. Those poles give directly the location (real part) and half-width 
(imaginary part) of the observed resonances in the cross-section and the 
residues give their magnitude. 

In the case shown in the last slide we find two poles, closer in real energy than 
the R-matrix states, one with very narrow width and one very broad, 
comprising in fact most of the summed widths of the two R-matrix states. 

SLIDE 20. 

Because there are normally two overlapping spin cases in the s-wave cross-
sections of the fissile nuclei, it is difficult to find good clear experimental 
examples of this phenomenon, but they do occur in the keV region of much 
lighter nuclei. 

Here is the total (almost pure elastic) cross-section of titanium, 74% Ti-48. 
The R-matrix fit has levels at the two main peaks shown with an interference 
dip between them. 



SLIDE 23. 

Let us look at the central energy region more closely. The S-matrix energy of 
the first pole is moved up a little to just above 18 keV, while that of the second 
has moved down from the red arrow signifying the R-matrix energy to 
directly under the interference dip. The width of the first pole is greater than 
the R-matrix width and that of the second is greatly decreased. The S-matrix 
description is that of a broad resonance embracing both peaks and a negative 
resonance near the middle of it. This seems unrealistic until you look at the 
capture cross-section which shows a positive peak virtually coinciding with 
the "negative" scattering resonance. The negativity is due to the phase 
difference in the residues of the two poles. 

SLIDES 24 

To return to our intermediate structure fission problem, already at near-
barrier and sub-barrier energies the intermediate structure, even if 
represented as a uniform picket-fence model, causes large reductions below 
the Hauser-Feshbach (statistical) model.  

SLIDE 25 

We can now attempt to construct a formula to obtain easily the resonance 
parameters; from these we can calculate simply the average cross-sections for 
the AVXSF code. This is important because of the highly stochastic nature of 
the resonances, both fine-structure and intermediate. To take this into 
account we perform Monte Carlo type generation of R-matrix parameters. 
Numerical point-by-point averaging over the resulting detailed cross-sections 
would be very time-consuming. We aim to calculate the average cross-section 
over each resonance simply from its S-matrix parameters. 

SLIDE 26. 

In the limit of the class-II fission width being much greater than the coupling 
width, we can find analytically that the profile of S-matrix fission widths is 
Lorentzian with the width of the class-II fission width and other widths close 
to the R-matrix values. In addition there is a very broad pole having most of 



the class-II fission width and a greatly reduced neutron width (compared with 
the average class-I value). 

SLIDES 27-28 

These slides show the S-matrix fission widths generated numerically from R-
matrix states for a range of ratios of Class-II fission to coupling widths. We 
see that in the intermediate cases the S-matrix widths are very different from 
both their R-matrix fission widths and our simple Lorentzian hypothesis. 

SLIDE 29 

This shows the ratio of model cross-section to numerical point-by-point 
averaging. It is clear that  use of the R-matrix parameters is reasonably good 
(and better than the S-matrix representation) for class-II fission width less 
than the coupling width, but our simple model is better (and good to within 
about 5%) above that. . The green curve is the result of an empirical construct 
that describes the condensation of a central group of states toward the final  
re-emergence of the class-II state as a broad underlying resonance. 

SLIDE 30. 

Conclusions. 

SLIDES 31 etc. 

Additional slides that were not shown in the lecture. These may be of some 
interest to those who wish to follow this subject more closely. ( A few were 
shown in the following discussion session) 
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