

Analysis of ¹³C excited states above the α -threshold by R-matrix analysis of α +⁹Be elastic and inelastic scattering data

Daniele Dell'Aquila and I. Lombardo

Università degli studi di Napoli "Federico II" & INFN – Sezione di Napoli

dellaquila@na.infn.it

Santa Fe (New Mexico, USA), June 28th 2016

- Clustering in phenomena in ¹³C and rotational bands;
- The spectroscopy of ¹³C above α -threshold;
- Compound-nucleus model and R-matrix calculations;

New data from α +⁹Be elastic scattering

• The Naples experiment: α +⁹Be resonant elastic backscattering;

R-matrix fit of data

- Preliminary results from elastic (α_0) and inelastic (α_1 , α_2) data;
- Possible interpretations;

Conclusions and perspectives

dellaquila@na.infn.it

Santa Fe (New Mexico, USA), June 28th 2016

Near and above the α -threshold \rightarrow different α -cluster configurations proposed for ¹³C \rightarrow theoretical works:

M. Milin and W. Von Oertzen EPJ A 14 (2002) 295

proposed parity doublet band of ${}^{9}Be_{gs} + \alpha$ cluster prolate configuration \rightarrow J^{π} assigments based on the rotational bands (K=3/2[±]).

T. Yoshida, N. Itagaki and T. Otsura, Phys. Rev. C 79 (2009)

N. Furutachi and M. Kimura, Phys. Rev. C 83 (2011)

microscopic 3α +n model \rightarrow proposed two new rotational bands (K=3/2⁻₂ and K=3/2⁻₃).

N. Furutachi and M. Kimura, Phys. Rev. C 83 (2011)

Near and above the α -threshold \rightarrow different α -cluster configurations proposed for ¹³C \rightarrow theoretical works:

M. Milin and W. Von Oertzen EPJ A 14 (2002) 295

proposed parity doublet band of ${}^{9}\text{Be}_{gs} + \alpha$ cluster prolate configuration \rightarrow J^{π} assigments based on the rotational bands (K=3/2[±]).

T. Yoshida, N. Itagaki and T. Otsura, Phys. Rev. C 79 (2009)

N. Furutachi and M. Kimura, Phys. Rev. C 83 (2011) microscopic 3α +n model \rightarrow proposed two new rotational bands (K=3/2⁻₂ and K=3/2⁻₃).

Coupling of one neutron with a ${}^{12}C^*$ core \rightarrow possible gaslike states analog of Hoyle state in ${}^{13}C$:

Y. Chiba and M. Kimura, J. Phys. Conf. Ser. 569 (2014) 012047 molecular bands (K=1/2^{\pm}).

T. Yamada and Y. Funaki, Phys. Rev. C 92 (2015) 034326 $1/2_{5}^{+}$ state predicted at 14.9 MeV with a strong ${}^{12}C(0_{2}^{+}) + n$ spectroscopic factor \rightarrow analog of Hoyle state in ${}^{13}C$.

Near and above the α -threshold \rightarrow different α -cluster configurations proposed for ¹³C \rightarrow theoretical works:

M. Milin and W. Von Oertzen EPJ A 14 (2002) 295

proposed parity doublet band of ${}^{9}\text{Be}_{gs} + \alpha$ cluster prolate configuration \rightarrow J^{π} assignments based on the rotational bands (K=3/2[±]).

T. Yoshida, N. Itagaki and T. Otsura, Phys. Rev. C 79 (2009)

N. Furutachi and M. Kimura, Phys. Rev. C 83 (2011) microscopic 3α +n model \rightarrow proposed two new rotational bands (K=3/2⁻₂ and K=3/2⁻₃).

Coupling of one neutron with a ${}^{12}C^*$ core \rightarrow possible gaslike states analog of Hoyle state in ${}^{13}C$:

Y. Chiba and M. Kimura, J. Phys. Conf. Ser. 569 (2014) 012047 molecular bands (K=1/2^{\pm}).

T. Yamada and Y. Funaki, Phys. Rev. C 92 (2015) 034326

 $1/2_{5}^{+}$ state predicted at 14.9 MeV with a strong ${}^{12}C(0_{2}^{+}) + n$ spectroscopic factor \rightarrow analog of Hoyle state in ${}^{13}C$.

The spectroscopy of ¹³C

from Ajzemberg-Selove compilation

INFN - Napoli ~ Univ. degli Studi di Napoli Federico II

[9/2-]	 17.40
[11/2']	 16.95
[7/2-]	 16.50
[11/2-]	 16.08
[9/2 ⁻]	 15.60
[5/2-]	 15.40
[9/2+]	 15.28
[3/2-]	 15.10
[9/2-]	 14.13
[7/2⁻] [7/2⁺]	 13.50 13.41
[5/2-]	 13.00
[7/2-]	 12.44
[3/2-] [5/2 ⁺]	 12.00 11.95

predicted rotational bands

Yamada and Funaki 1/2⁺₅ [1/2+] ______ 14.90

Furutachi and Kimunra $K^{\pi}=3/2^{-}_{3}$ Furutachi and Kimunra $K^{\pi}=3/2^{-}_{2}$ Milin and Von Oertzen $K^{\pi}=3/2^{+}$ Milin and Von Oertzen $K^{\pi}=3/2^{-}$

Daniele Dell'Aquila (dellaquila@na.infn.it) – Rmatrix'16, Santa Fe (NM), June 28th 2016

The spectroscopy of ¹³C

To investigate the structure of ¹³C above the α -threshold (10.651 MeV) \rightarrow ⁹Be(α ,n), ⁹Be(⁶Li,d), ¹³C(α , α '), ⁹Be(α , α) etc.

DK

DK

DK

DK

DK

IK

IK

DK

The Resonant Elastic Scattering is particularly suited for investigating states in the compound ¹³C with α -cluster nature since the ⁹Be presents a well developed molecular nature.

- R.B. Taylor et al, NPA 65 (1965) 318
- J.D. Goss et al, PRC 7 (1973)
- Z.A. Saleh et al, Ann. Phys. 7 (1974) 76
- J. Leavitt et al, NIM B 85 (1994) 37
- J. Liu et al, NIM B 108 (1996) 247
- M. Zadro et al, NIM B 259 (2007) 836
- M. Freer et al, PRC 84 (2011) 034317
- I. Lombardo et al, NIM B 302 (2013) 19

 $6.3 < E_{lab} < 19.7$ $1.7 < E_{lab} < 5.6$ $1.4 < E_{lab} < 2.5$ $0.6 < E_{lab} < 4.2$ $0.9 < E_{lab} < 5.3$ $2.0 < E_{cm} < 4.3$ $1.6 < E_{cm} < 6.0$ $2.4 < E_{cm} < 6.4$

from Ajzemberg-Selove compilation

Data from RES experiments: $0.5 MeV \le E_{\alpha} \le 3.5 MeV$

from Ajzemberg-Selove compilation

Data from RES experiments: $E_{\alpha} > 3.5 MeV$

	Goss	et al.							
E _x (MeV)	E _α (MeV)	Jπ	Г (keV)	E _x (MeV)	Ε _α (MeV)	Jπ	Г (keV)	Jπ	
L3.28	3.80	3/2-	343	13.38	3.94	3/2-	340		6
L3.42	4.00	(9/2-)	58	13.43	4.01	9/2 ⁻ ,7/2 ⁺	2	7/2+	β
L3.56	4.20	5/2+	685	13.53	4.16	7/2 ⁻	596	7/2-	bai
L3.77	4.51	3/2+	247	13.93	4.74	5/2+	337		a
L4.11	5.00	5/2-	75	14.13	5.03	5/2 ⁻	124	9/2-	u o
L4.16	5.07	7/2+	73						ati
L4.46	5.50	(5/2+)	400	14.41	5.43	7/2 ⁻	111		ot
				14.72	5.88	9/2+	285		σ
				14.96	6.22	7/2 ⁻	406	9/2+	Se
				15.15	6.50	5/2 ⁻	493	3/2-	d
				16.14	7.93	7/2+	140		20
				16.16	7.96	5/2 ⁻	253		

The experiment: technical details

Beam: ⁴He⁺⁺ → E_{Lab} : 3.6 – 10 MeV (60keV step, 110 energy changes, energy spread ≤ 3 keV) TTT-3MV of Laboratorio Acceleratore – Naples, Italy

Silicon SB and PIPS detectors: energy resolution 7.0 – 10 ‰

Thick target experiment: cross check

- background
- exp. data
- exp. data (background sub)
 - calculation

Calculation of thick-target yield including the measured cross section of ${}^{9}Be(\alpha,\alpha)$ at $160^{\circ} \rightarrow$ satisfactory agreement with the experimental points (background subtracted) \rightarrow nice *benchmark* for the cross section.

$d\sigma/d\Omega$ ⁹Be(α, α_0) elastic backscattering

Excitation functions ${}^{9}\text{Be}(\alpha, \alpha) \rightarrow resonant structures$

 1^{st} point \rightarrow check of our data (excitation function at 160°) with a thick target backscattering experiment.

 2^{nd} point \rightarrow check of our data with the literature:

Goss et al PRC 7 (1973) (157.3°, 130° and 114°) \rightarrow match of shapes and absolute values

Taylor et al NPA (1965) (136° and 118°) \rightarrow match of shapes and absolute value at higher energies

Freer et al PRC 84 (2011) (more backward angle, 180°) \rightarrow match of the shape.

$d\sigma/d\Omega$ ⁹Be($\alpha, \alpha_{1,2}$) inelastic data

included in the fit \rightarrow never observed in inelastic scattering reactions.

Vanishing contribution of α particles from ⁹Be break-up \rightarrow Monte Carlo calculation.

& INFN - Napoli

Univ. degli Studi di Napoli Federico II

AZURE2

Comprehensive R-matrix fit of ${}^{9}\text{Be}(\alpha, \alpha_{0})$ data (ϑ_{lab} =160°, 150°, 135° and 110°) and ${}^{9}\text{Be}(\alpha, \alpha_{1,2})$ data (ϑ_{lab} =70°) \rightarrow AZURE2 program. Inclusion of *Goss et al.* data at low energies (157.3°, green triangles).

Channels used to reproduce the data:

- 1. ${}^{9}\text{Be}(\alpha, \alpha)$
- 2. ${}^{9}\text{Be}(\alpha,\alpha_1)$
- 3. ${}^{9}\text{Be}(\alpha, \alpha_2)$
- 4. ⁹Be(α,n)

R-matrix fit: preliminary results

AZURE R-Matrix Program

AZURE2

Comprehensive R-matrix fit of ${}^{9}Be(\alpha, \alpha_{0})$ data (ϑ_{lab} =160°, 150°, 135° and 110°) and ${}^{9}Be(\alpha, \alpha_{1,2})$ data (ϑ_{lab} =70°) \rightarrow AZURE2 program. Inclusion of *Goss et al.* data at low energies (157.3°, green triangles).

E _x (MeV)	Jπ	I (keV)	Γ_{α} (keV)	I'n (keV)
11.97	5/2+	186	76	110
12.22	5/2-	579	150	429
12.47	1/2-	581	81	500
13.01	1/2+	83	15	68
13.15	3/2-	206	27	178
13.44	7/2+	6	6	0
13.55	7/2-	465	263	203
13.77	3/2-	582	452	129
14.14	5/2-	81	81	0
14.34	7/2-	312	96	216
14.50	7/2+	1622	680	942
14.65	7/2-	339	325	15
14.97	5/2+	1260	1038	222
15.36	3/2+	152	21	131
15.88	7/2-	233	155	23
15.91	5/2-	524	232	30
16.08	3/2+	181	61	116
16.12	1/2-	587	314	130
16.17	5/2+	361	215	121
16.41	5/2-	287	112	28
16.53	7/2+	748	63	245
16.63	3/2-	1184	304	299
16.77	7/2+	1179	240	877
16.94	5/2+	125	10	0
17.16	7/2-	868	506	360
17.21	3/2+	68	28	0
17 28	3/2-	438	335	73

R-matrix fit: summary of the spectroscopy

Ajze	emberg-Selo	ve	Goss	et al.		Freer	· et al.			Our Data	
E (MeV)	Jπ	Γ (keV)	E, (MeV)	jπ	Γ (keV)	E, (MeV)	jπ	Γ (keV)	E, (MeV)	Jπ	Γ (keV)
11.95	5/2+	500 ± 80							11.970	5/2+	186
12.106	3/2+	540 ± 70									
12.13	5/2-	80 ± 30									
12.14	1/2-	430 ± 0									
12.18	3/2-	150 ± 40							12.220	5/2-	579
12.43	7/2-	140 ± 30							12.470	1/2-	581
									13.010	1/2+	83
13.28	(3/2-)	340	13.28	3/2-	343	13.38	3/2-	340	13.150	3/2-	206
13.41	(9/2-)	35	13.42	(9/2-)	58	13.43	9/2-,7/2+	2	13.454	7/2+	6
13.57	7/2-	620	13.56	5/2+	685	13.53	7/2-	596	13.553	7/2-	465
13.76	(5/2,3/2)+	≈ 300	13.77	3/2+	247	13.93	5/2+	337	13.768	3/2-	582
14.13	3/2-	≈ 150	14.11	5/2-	75	14.13	5/2-	124	14.135	5/2-	81
			14.16	7/2+	73						
14.39	(1/2,5/2)-	280 ± 70	14.46	5/2+	400	14.41	7/2-	111	14.342	7/2-	312
									14.500	7/2+	1622
14.58	(7/2+,9/2+)	230 ± 60				14.72	9/2+	285	14.650	7/2-	339
14.98	(7/2-)	380 ± 60				14.96	7/2-	406	14.970	5/2+	1260
15.10(8)	3/2-	5.5									
15.27	9/2+					15.15	5/2-	493	15.357	3/2+	152
15.53	(3/2-)	150 ± 30							15.876	7/2-	233
									15.906	5/2-	524
16.08	(7/2+)	150 ± 15				16.14	7/2+	140	16.084	3/2+	181
16.15	(5/2-)	270				16.16	5/2-	253	16.121	1/2-	587
16.18		(40 ± 20)							16.173	5/2+	361
									16.413	5/2-	287
									16.533	7/2+	748
									16.628	3/2-	1184
		0.00							16.770	7/2+	1179
16.95		330							16.937	5/2+	125
									17.157	7/2-	868
									17.209	3/2+	68
47.26		100							17.277	3/2-	438
17.36		190									
17.53		$1/\pm 6$									
17.69	(3/2,5/2)	170									

• Investigations of ¹³C spectroscopy at E_x larger than the α emission threshold \rightarrow useful method to unveil cluster structures in non self-conjugated nuclei

• A possible reaction \rightarrow ⁹Be(α, α) RES \rightarrow *few data* available in the literature (many uncertainties in J^{π} assignments)

• A new experiment carried out at Laboratorio dell'Acceleratore (TTT-3MV) of the University of Naples "Federico II" \rightarrow direct kinematics \rightarrow excitation functions of ${}^{9}Be(\alpha,\alpha_{0})$ EBS at $\vartheta_{lab} = 110^{\circ}$, 135°, 150°, 160° in $E_{\alpha} = 3.6 - 10$ MeV energy range \rightarrow inelastic α_{1} and α_{2} at $\vartheta_{lab} = 70^{\circ}$

• Comprehensive *R*-matrix fit of the data by including the ${}^{9}Be(\alpha,\alpha_{0})$ data (160°, 150°, 135° and 110°), the ${}^{9}Be(\alpha,\alpha_{1,2})$ data (70°) and the low energy points from *Goss et al*.

• Strong efforts to fit data at various angles \rightarrow reproduction of data with a reasonable set of parameters in a wide energy range \rightarrow new preliminary spectroscopic information in the region $E_x = 16 \text{ MeV} - 17 \text{ MeV}$

• New data with different techniques and channels would help in the understanding of ¹³C spectroscopy in this complicated region.

Thank you for your attention.

Univ. Napoli Federico II and INFN – Napoli

Further Slides

The experiment: technical details

Manufactured by INFN Laboratori Nazionali del Sud - Catania

- good identification of scattering events
- → kinematics and target structure
- very low background

- Napoli **Univ. Napoli Federico II and INFN**

Excitation fucntions at various angles