LA-UR-16-24218

R-MATRIX METHODS & APPLICATIONS WITH **EDA**

M. Paris & G. Hale (T-2, Los Alamos National Lab)

Outline

- Overview
 - History at LANL
 - Existing analyses
- R-matrix formalism
 - Bloch formalism
 - Wolfenstein formalism
 - Fitting, errors, covariance
- Analyses (systems)
 - □ ⁷Be, ¹⁷O
- Resonance model (if there's time)
 - Particle spectra

Overview of multichannel reaction analysis

- History of Energy Dependent Analysis
 - Developers: D. Dodder, K. Witte, G. Hale, A. Sierk, MP
 - **Some** original motivation: hadronic analyses e.g. $\pi N \rightarrow \pi N$
 - EDA5 F77; EDA6 F90/95 (under development)
- Code overview
 - EDA5/6 implement Wigner/Eisenbud/Bloch phenomenological R matrix
 - Handles large number of two-body partitions & channels, including EM
 - Data: elastic, inelastic, reaction; diff'l, integrated, total, polarization
- Existing analyses to date...

EDA Existing Analyses

~		
_		

	Α	System	Channels	Energy Range (MeV)				
	2	N-N	p+p; n+p,	0-30				
			γ+d	0-40				
	3	N-d	p+d; n+d	0-4				
		⁴ H	n+t					
	4	⁴ Li	p+ ³ He	0-20				
		⁴ He	p+t	0-11				
			n+ ³ He	0-10				
			d+d	0-10				
	5		n+ α	0-28				
		⁵ He	d+t	0-10				
			⁵ He+γ					
		51 :	p+α	0-24				
		~LI 	d+ ³ He	0-1.4				

EDA Existing Analyses, Cont.

20

NATIONAL LABORATORY — EST.1943 —

.

Α	System (Channels)					
6	⁶ He (⁵ He+n, t+t); ⁶ Li (d+ ⁴ He, t+ ³ He); ⁶ Be (⁵ Li+p, ³ He+ ³ He)					
7	⁷ Li (t+ ⁴ He, n+ ⁶ Li); ⁷ Be (γ+ ⁷ Be, ³ He+ ⁴ He, p+ ⁶ Li)					
8	⁸ Be (⁴ He+ ⁴ He, p+ ⁷ Li, n+ ⁷ Be, p+ ⁷ Li [*] , n+ ⁷ Be [*] , d+ ⁶ Li)					
9	⁹ Be (⁸ Be+n, d+ ⁷ Li, t+ ⁶ Li); ⁹ B (γ+ ⁹ B, ⁸ Be+p, d+ ⁷ Be, ³ He+ ⁶ Li)					
10	¹⁰ Be (n+ ⁹ Be, ⁶ He+ α , ⁸ Be+nn, t+ ⁷ Li); ¹⁰ B (α + ⁶ Li, p+ ⁹ Be, ³ He+ ⁷ Li)					
11	¹¹ B (α + ⁷ Li, α + ⁷ Li [*] , ⁸ Be+t, n+ ¹⁰ B); ¹¹ C (α + ⁷ Be, p+ ¹⁰ B)					
12	¹² C (⁸ Be+α, p+ ¹¹ B)					
13	¹³ C (n+ ¹² C, n+ ¹² C*)					
14	¹⁴ C (n+ ¹³ C)					
15	¹⁵ N (p+ ¹⁴ C, n+ ¹⁴ N, α + ¹¹ B)					
16	¹⁶ Ο (γ+ ¹⁶ Ο, α+ ¹² C)					
17	¹⁷ O (n+ ¹⁶ O, α + ¹³ C)					
18	¹⁸ Ne (p+ ¹⁷ F, p+ ¹⁷ F [*] , α+ ¹⁴ Ο)					
mos	Paris & Hale (IANI) R-Matrix Worksh					

$2 \rightarrow 2$ body R matrix formalism

S Alamos

Paris & Hale (LANL)

R-Matrix Workshop 2016

Bloch/Green-function formalism: Hermiticity

7

UNE FORMULATION UNIFIÉE DE LA THÉORIE DES RÉACTIONS NUCLÉAIRES

CLAUDE BLOCH

Centre d'Études Nucléaires de Saclay, Gij-sur-Yvette (S. & O.)

Reçu le 13 avril 1957

A unified formulation of the theory of nuclear reactions

Claude Bloch¹

Centre d'Études Nucléaires de Saclay, Gif-sur-Yvette (S. & O.)

$$\begin{split} \int_{0}^{R} r^{2} dr [\psi_{1}^{*}(H\psi_{2}) - (H\psi_{1})^{*}\psi_{2}] &= -\frac{\hbar^{2}}{2M} \left[r\psi_{1}^{*} \frac{d(r\psi_{2})}{dr} - \frac{d(r\psi_{1}^{*})}{dr} r\psi_{2} \right]_{R} \\ \mathscr{H} &= H + \frac{\hbar^{2}}{2MR} \delta(r-R) \frac{d}{dr} r, \\ \int_{0}^{R} r^{2} dr \left[\psi_{1}^{*}(\mathscr{H}\psi_{2}) - (\mathscr{H}\psi_{1})^{*}\psi_{2} \right] &= 0. \end{split}$$

Bloch/GF formalism: Generalized GF

$$[\mathscr{H} - E] \psi(r) = F(r), \qquad F(r) = f(r) + A\delta(r - R)$$
$$\mathscr{H} = H + \mathscr{L}_0, \qquad \mathscr{L}_0 = \frac{\hbar^2}{2M} \frac{\delta(r - R)}{R} \frac{d}{dr}r$$

Equivalent to:

$$\left[\mathscr{H} - E \right] \psi(r) = f(r), \qquad r < R$$
$$\frac{\hbar^2}{2MR} \left[\frac{d}{dr} \left(r\psi(r) \right) \right]_R = A, \qquad r = R$$

Bloch/GF formalism: representation independence

- 9
- The singularity Dirac delta function is only present in the position representation ('R' is the channel radius)

$$\mathscr{L}_B = \frac{\hbar^2}{2M} \frac{\delta(r-R)}{R} \left(\frac{d}{dr}r - B\right)$$

Equivalent to

$$\hat{\mathscr{L}}_B = \frac{\hbar^2 R^2}{2M} |R\rangle \langle R| \left(i\hat{p}_r - B \right)$$

Bloch operator as a projection operator

Bloch/GF formalism: multichannel case

10

■ Solve Schrodinger knowing External solution ('a' chan. rad.) $[H - E]\Psi = 0, \qquad \Psi = r^{-1} [I - OS], \qquad r \ge a$ $\Psi = G \mathscr{L} \Psi, \qquad \qquad G = [H - E + \mathscr{L}]^{-1}, \qquad \mathscr{L} = a^{-1} (\rho \frac{\partial}{\partial \rho} - B)$ $I - OS = R (\rho \frac{\partial}{\partial \rho} - B) [I - OS], \qquad R \equiv G |_{\mathscr{S}}, \qquad \rho \frac{\partial}{\partial \rho} O = LO$ $S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}, \qquad R_L = [1 + R(B - L)]^{-1}R, \quad \rho \frac{\partial}{\partial \rho} I = LI - 2i\rho O^{-1}$

External Coulomb wave function relations

$$O = I^* = G + iF, \qquad 1 = GF' - G'F,$$
$$L = \rho O^{-1} \frac{\partial}{\partial \rho} O \equiv S + iP, \qquad S = \rho \frac{GG' + FF'}{G^2 + F^2}, \qquad P = \rho \frac{1}{G^2 + F^2}$$

OS Alamos

Bloch/GF formalism: multichannel unitarity

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1} \qquad (M^{\dagger})^{-1} = (M^{-1})$$

$$S^{\dagger} = OI^{-1} - 2i\rho I^{-1}R_L^{\dagger}I^{-1} \qquad (M^{\dagger})^{-1} = (M^{-1})$$

$$S^{\dagger}S = 1 + 2i\rho I^{-1}R_L^{\dagger} \left[(R_L^{-1})^{\dagger} - R_L^{-1} + 2i\rho I^{-1}O^{-1} \right] R_L O^{-1}$$

$$R_L^{-1} = R^{-1} + B - L$$

$$B = B^* \implies L - L^* = 2i\rho I^{-1}O^{-1} \text{ or } P = \rho \frac{1}{G^2 + F^2}$$

$$R_{c'c} = (c' | [H + \mathscr{L} - E]^{-1} | c) = \sum_{\lambda} \frac{\gamma_{c'\lambda}\gamma_{c\lambda}}{E_{\lambda} - E}$$

• Unitarity requires B real

11

- Energy independent level E $_{\lambda}\,$ and reduced width $\,\gamma_{\,{}_{\rm C}\,\lambda}\,$ require B constant
- Unitarity is lost if $\,B=\mathcal{S}(E)\,$ with constant ${\sf E}_{\lambda}$, $\, {\it \gamma}_{\,{\rm c}\,\lambda}$

Unitarity constraint on T matrix

12

$$\begin{cases} \delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\ S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\ \rho_{n} &= \delta(H_{0} - E_{n}) \end{cases} \end{cases} T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_{n} T_{ni} \end{cases}$$

NB: unitarity implies optical theorem $\sigma_{tot} = \frac{4\pi}{k} \text{Im } f(0)$; but not just the O.T.

Implications of unitarity constraint on transition matrix

- Doesn't uniquely determine T_{ii}; highly restrictive, however 1. Elastic: Im $T_{11}^{-1} = -\rho_1, \ E < E_2$ (assuming T & P invariance) Multichannel: Im $\mathbf{T}^{-1} = -\boldsymbol{\rho}$
- 2. Unitarity violating transformations

 - cannot scale **any** set: $T_{ij} \rightarrow \alpha_{ij}T_{ij}$ $\alpha_{ij} \in \mathbb{R}$ cannot rotate **any** set: $T_{ij} \rightarrow e^{i\theta_{ij}}T_{ij}$ $\theta_{ij} \in \mathbb{R}$
 - \star consequence of linear 'LHS' \propto quadratic 'RHS'
- 3. Unitary parametrizations of data provide constraints that experiment may violate

Channel radius as **regulator** of the theory

13

Simple example: single channel, s-wave, neutral

$$S = O^{-1}I + 2i\rho O^{-1}R_L O^{-1}, \qquad B = 0, \rho = ka$$
$$= e^{-2i\rho} \frac{1 + i\rho R}{1 - i\rho R}$$
$$\frac{\partial S}{\partial a} = 0 \implies 0 = \rho R'(\rho) + R(\rho) - \rho^2 R^2(\rho) - 1$$
$$R(\rho) = \rho^{-1} \tan\left(\rho + f(k)\right)$$

 \Box f(k) is a familiar function – What is it?

A request: Does anyone have Teichmann's thesis?
 Quoted in Lane & Thomas footnote #48, p. 275

Complete, polarization transition matrix

EST. 1943

Wolfenstein formalism

$$\langle O_f \rangle = \frac{1}{\operatorname{Tr}(\rho_f)} \operatorname{Tr}(\rho_f O_f) = \frac{1}{\operatorname{Tr}(\rho_f)} \operatorname{Tr}(M \rho_i M^{\dagger} O_f),$$

 $\rho = a a^{\dagger}, \text{ and } a_f = M a_{i^{\dagger}}$

Using the expansion
$$\rho_i = \frac{1}{\operatorname{Tr}(\mathbb{I}_i)} \sum_i \langle O_i \rangle O_i$$
,

and defining $Tr(\rho_f) = \sigma_0(\theta)$ gives finally

Lincoln Wolfenstein 1923-2015

$$\sigma_0(\theta) \left\langle O_f \right\rangle = \frac{1}{\mathrm{Tr}(\mathbb{I}_i)} \sum_i \left\langle O_i \right\rangle \mathrm{Tr}(MO_i M^{\dagger}O_f), \quad \begin{cases} O_i = O_1 \otimes O_2 \\ O_f = O_3 \otimes O_4 \end{cases}$$

$$M_{fi} = \frac{4\pi}{k_i} \left\langle \phi_{s'}^{\mu'} \left| \hat{T} \right| \phi_s^{\mu} \right\rangle = \frac{4\pi}{k_i} \sum_{JMl'l} \left\langle \phi_{s'}^{\mu'} \left| \mathcal{Y}_{Js'l'}^M \right\rangle T_{s'l',sl}^J \left\langle \mathcal{Y}_{Jsl}^M \right| \phi_s^{\mu} \right\rangle.$$

Relativistic forms of EDA

$$R = \sum_{\lambda} \frac{\gamma_{\lambda} \gamma_{\lambda}^{T}}{E_{\lambda}(s) - E(s)},$$

$$s = (p_{1} + p_{2})^{2} = (p_{3} + p_{4})^{2} = (\mathcal{E}_{rel} + M)^{2}.$$

Forms for $E_{(\lambda)}(s)$:
a) $\sqrt{s} - M = \mathcal{E}_{rel}$
b) $\frac{s - M^{2}}{2M} = \left(1 + \frac{\mathcal{E}_{rel}}{2M}\right) \mathcal{E}_{rel}$
c) $\frac{(s - M^{2})(s - \Delta^{2})}{8s\mu}$ (Layson)
d) \mathcal{E}_{nr} (norel=1)

$$\begin{cases}M = m_{1} + m_{2}\\\Delta = m_{1} - m_{2}\\\mu = \frac{m_{1}m_{2}}{m_{1} + m_{2}}\end{cases}$$

EM Transitions and Photon Channels

16

Assume that in the one-photon sector of Fock space, a "wave function" is associated with the vector potential

$$\mathbf{A}_{\mathbf{k}}(\mathbf{r}) = \sqrt{\frac{2}{\pi\hbar c}} \sum_{jm} i^{j} \left[\alpha_{jm}^{(e)} \mathbf{A}_{jm}^{(e)}(\mathbf{r}) + \alpha_{jm}^{(m)} \mathbf{A}_{jm}^{(m)}(\mathbf{r}) \right],$$

$$\mathbf{A}_{jm}^{(e)}(\mathbf{r}) = \frac{1}{r} \left[u_{ee}^{j}(\rho) \mathbf{Y}_{jm}^{(e)}(\hat{\mathbf{r}}) + u_{0e}^{j}(\rho) \mathbf{Y}_{jm}^{(0)}(\hat{\mathbf{r}}) \right], \text{ parity}=(-1)^{j},$$

$$\mathbf{A}_{jm}^{(m)}(\mathbf{r}) = \frac{1}{r} u_{mm}^{j}(\rho) \mathbf{Y}_{jm}^{(m)}(\hat{\mathbf{r}}), \text{ parity}=(-1)^{j+1}.$$

The physical radial functions have the asymptotic forms

$$u_{ii}^{j}(\rho) = F_{j}^{(i)} + O_{j}^{(i)}t_{ii}^{j} \quad (i = e, m),$$

with $O_{j}^{(m)} = h_{j}^{+}(\rho), \ O_{j}^{(e)} = -\partial_{\rho}h_{j}^{+}(\rho), \text{ and } F_{j}^{(i)} = \text{Im}O_{j}^{(i)}.$

In the usual approach, $O_j^{(e)} = O_j^{(m)} = h_j^+(\rho)$.

Scheme and Properties of the EDA Code

17

Energy Dependent Analysis Code

- Accommodates general (spins, masses, charges) two-body channels
- Uses relativistic kinematics and R-matrix formulation
- Calculates general scattering observables for 2→2 processes
- Has rather general data-handling capabilities (but not as general as, e.g., SAMMY)
- Uses modified variable-metric algorithm that gives parameter covariances at a solution

Uncertainties from Chi-Squared Minimization

18

$$\chi^{2}_{\text{EDA}} = \sum_{i} \left[\frac{nX_{i}(\mathbf{p}) - R_{i}}{\Delta R_{i}} \right]^{2} + \left[\frac{nS - 1}{\Delta S / S} \right]^{2}$$

 $\begin{cases} R_i, \Delta R_i = \text{relative measurement, uncertainty} \\ S, \Delta S = \text{experimental scale, uncertainty} \\ X_i(\mathbf{p}) = \text{observable calc. from res. pars. } \mathbf{p} \\ n = \text{normalization parameter} \end{cases}$

Near a minimum of the chi-squared function at $\mathbf{p} = \mathbf{p}_0$,

$$\chi^{2}(\mathbf{p}) = \chi_{0}^{2} + (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{g}_{0} + \frac{1}{2} (\mathbf{p} - \mathbf{p}_{0})^{\mathrm{T}} \mathbf{G}_{0} (\mathbf{p} - \mathbf{p}_{0}) = \chi_{0}^{2} + \Delta \chi^{2}. \begin{cases} \chi_{0}^{2} = \chi^{2}(\mathbf{p}_{0}) \\ \mathbf{g}_{0} = \nabla_{\mathbf{p}} \chi^{2}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \approx 0 \\ \mathbf{G}_{0} = \nabla_{\mathbf{p}} \mathbf{g}(\mathbf{p}) |_{\mathbf{p} = \mathbf{p}_{0}} \end{cases}$$

The parameter covariance matrix is $C_0 = 2G_0^{-1}$, and so first-order error propagation gives for the cross-section covariances

$$\operatorname{cov}[\sigma_{i}(E)\sigma_{j}(E')] = \left[\nabla_{\mathbf{p}}\sigma_{i}(E)\right]^{\mathrm{T}} \mathbf{C}_{0}\left[\nabla_{\mathbf{p}}\sigma_{j}(E')\right]_{\mathbf{p}=\mathbf{p}_{0}}$$
$$= \Delta\sigma_{i}(E)\Delta\sigma_{j}(E')\rho_{ij}(E,E').$$

Parameter confidence intervals

19

It was proposed by Y. Avni [*Ap. J.* **210**, 642 (1976)] to define confidence intervals for the parameters of a fit by the condition

$$\Delta \chi^2 = \frac{1}{2} \Delta \mathbf{p}^{\mathrm{T}} \mathbf{G}_0 \Delta \mathbf{p} \le \Delta \chi^2_{\mathrm{max}}$$

where $\Delta \chi^2_{\text{max}}$ is chosen to give a particular confidence level (CL)

$$P(\Delta \chi^2 | k) = \left[2^{\frac{k}{2}} \Gamma(\frac{k}{2}) \right]^{-1} \int_{0}^{\Delta \chi^2_{\text{max}}} t^{\frac{k}{2} - 1} e^{-\frac{t}{2}} dt = \text{CL} \text{ (e.g. } \sim 0.68 \text{ for } 1 - \sigma), \ 0.95 \text{ for } 2 - \sigma, \text{ etc.}$$

for a chi-squared distribution with *k* degrees of freedom. Many statistical analysis (not necessarily physical science) applications use this method to determine parameter uncertainties (usually with CL = 95%, or 2- σ). For CL = 68% (1- σ), $\Delta \chi^2_{\rm max} \approx k = \langle \Delta \chi^2 \rangle$. This results in 1- σ parameter confidence intervals, *

$$\Delta p_i \leq \sqrt{2\Delta \chi^2_{\max} H_{ii}} = \sqrt{\Delta \chi^2_{\max} C^0_{ii}} \approx \sqrt{kC^0_{ii}},$$

that are $\sim \sqrt{k}$ larger than the standard deviations (σ_{p}).

when the remaining parameters are adjusted to obtain a new chi-square minimum

Analyses

 \square ⁷Be

⁷Be System Analysis

21

	С	hannel	I _{max}	a	r _c (fm)			
	³ He+ ⁴ He		4		4.4			
		p+ ⁶ Li	1		3.1			
		γ+ ⁷ Be	1		50			
Reaction		Energy (Me	v range eV)		# obs. types	# (pc	data bints	
⁴ He(³ He, ³ He) ⁴ H	le	E _{3He} = 1	.7-10.8		2	1	487	
^₄ He(³ He,p) ⁶ Li		E _{3He} = 8	.2-10.8		1		130	
⁴ He(³ He,γ) ⁷ Be	;	E _{3He} = 0-	-2.2		1		40	
⁶ Li(p, ³ He) ⁴ He	•	E _p = 0-2	.7		2		488	
⁶ Li(p,p) ⁶ Li		E _p = 1.2	-2.5		1		187	
⁶ Li(p,γ) ⁷ Be		E _p = 0-1.2		E _p = 0-1.2		1		28
Totals					8	2	360	

Example: ³He+⁴He Scattering

Resonances in the Cross Sections

NATIONAL

EST. 1943

¹⁷O System Analysis

	Channel	a	(fm)	l _{ma}	ax	
	n+ ¹⁶ O		4.3	4		
	α+ ¹³ C		5.4	5)	
Reaction	Energies (MeV)		# dat point	a ts		Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	E _n = 0 – 7		2718		$\sigma_{T}, \sigma(\theta), P_{n}(\theta)$
¹⁶ O(n,α) ¹³ C	E _n = 2.35 –	E _n = 2.35 – 5		850		$_{\text{int}}, \sigma(\theta), A_{n}(\theta)$
¹³ C(α,n) ¹⁶ O	$E_{\alpha} = 0 - 5.4$	$E_{\alpha} = 0 - 5.4$		874		σ_{int}
$^{13}C(\alpha,\alpha)^{13}C$	$E_{\alpha} = 2 - 5.7$,	1296			σ(θ)
total				5738		8

¹⁷O System: comparison with data

Spectra

3-body final states are handled by the LANL auxiliary code SPECT

Motivation

Study A=6 compound systems (R*) $R^* \rightarrow {}^{6}\text{He} \qquad {}^{6}\text{Li} \qquad T(t,n)n\alpha \qquad T({}^{3}\text{He},p)n\alpha$

Stellar astrophysics: pp chain

Cosmology: big bang nucleosynthesis '⁷Li problem'

n more neutrons from T(t,n)n α can destroy mass-7 via eg. ⁷Be(n,p)

Inertial confinement fusion

OMEGA & NIF facilities are being used to study reactions of light nuclei

CollaboratorsMIT: Frenje, Gatu-Johnson, Li, PetrassoLANL: Hale, Herrmann, Kim, McEvoy,
ZylstraRochester: Forrest, Knauer, Stoeckl
LLNL: Hohensee, McNabb, Pino, Sayre

OU: Brune

Resonance model assumptions

- 29
- Objective: use two-body data to describe three-body final states
- Approximate the three-body transition matrix as sum of sequential two-body decays

$$T^{(3)} = \sum_{i}^{N_c} c_i \tilde{T}_i^{(2)}$$

□ Limit $N_c \rightarrow \infty$ this is exact; we approximate ∞ by 3(!): 'Faddeev-like'

- \Box Single level R-matrix description for $T_i^{(2)}$
- Interference between configurations ignored

Resonance model for 3-body final state (I)

'Faddeev-like': two-body subsystems are not bound

Off-shell distorted wave

Resonance model for 3-body final state (II)

Data fitting

- □ Livermore '65 accelerator T(t,n)n α
 - Recommended resolution broadening 0.5 MeV FWHM (determined from 14 MeV n peak)
 - Difficult to get realistic fit with 0.5 MeV at large E_n; used 0.250 MeV & more narrow 'extended' R-matrix parameters
- OMEGA ³He³He data (courtesy A. Zylstra, LANL)
 - Scaled data (arbitrarily) to theory
 - should use total cross section
 - Gaussian thermal broadening 0.230 MeV
 - neglects small instrument broadening
- Least squares fit
 - parameters (next slide) R_L⁽ⁱ⁾

Model parameters

33

🗆 T(t,n)n	α ΝΡΑ 708 3 ('02)				
	Channel (resonance)	J^{π}	E _R (MeV)	arGamma (MeV)	R ^L
	⁵ He+n	3/2-	0.99	0.65	0.157
	⁵ He [*] +n	1/2 ⁻	6.66	20.6	0.547
	⁴ He+(nn)	0+	-0.07	0.	0.338
			ιγ]	
□ ³ He(³ H	le,p)pα		Fixed by 2-	body data	
	Channel (resonance)	Jπ	E _R (MeV)	Γ (MeV)	R ^L
	⁵ Li+p	3/2-	2.08	2.11	0.157
	⁵ Li [*] +p	1/2-	8.26	19.8	0.547
	⁴ He+(pp)	0+	1.56	0.	0.234

$T(t,n)n\alpha$

Ó

- EST.1943

 $^{3}\mathrm{He}(^{3}\mathrm{He},p)p\alpha$

.

EST.1943

Alpha spectra

36

EST.1943

Planned improvements

Data

- Incorporate all OMEGA ³He³He & ³HeT
- Include NIF TT
- *Q* spectra
- Fitting
 - Non-linear least squares
 - Marquardt-Levenberg; gradient; etc.
- Model
 - Angular dependence nn wave function
 - Incident energy dependence

$2 \rightarrow 2$ body R matrix formalism

INTERIOR (Many-Body) REGION (Microscopic Calculations)

 $\begin{array}{c}
\underbrace{H + \mathcal{L}_B} \\
\text{compact, hermitian} \\
\text{operator with real,} \\
\text{discrete spectrum;} \\
\text{eigenfunctions in} \\
\text{Hilbert space} \\
\left(\psi^+\right) = \left(H + \mathcal{L}_B - E\right)^{-1} \mathcal{L}_B |\psi^+)
\end{array}$

ASYMPTOTIC REGION (S-matrix, phase shifts, etc.)

$$(r_{c'} | \psi_c^+ \rangle = -I_{c'}(r_{c'})\delta_{c'c} + O_{c'}(r_{c'})S_{c'c}$$

or equivalently,

$$(r_{c'}|\psi_{c}^{+}\rangle = F_{c'}(r_{c'})\delta_{c'c} + O_{c'}(r_{c'})T_{c'c}$$

Measurements

SURFACE

$$\mathcal{L}_{B} = \sum_{c} |c| (c) \left(c \left(\frac{\partial}{\partial r_{c}} r_{c} - B_{c} \right) \right),$$
$$(\mathbf{r}_{c} | c) = \frac{\hbar}{\sqrt{2\mu_{c}a_{c}}} \frac{\delta(r_{c} - a_{c})}{r_{c}} \left[\left(\phi_{s_{1}}^{\mu_{1}} \otimes \phi_{s_{2}}^{\mu_{2}} \right)_{s}^{\mu} \otimes Y_{l}^{m}(\hat{\mathbf{r}}_{c}) \right]_{J}^{M}$$

$$R_{c'c} = (c' \mid (H + \mathcal{L}_B - E)^{-1} \mid c) = \sum_{\lambda} \frac{(c' \mid \lambda)(\lambda \mid c)}{E_{\lambda} - E}$$

 \Box Channels: $r_c = a_c$

not nec. nucl. surface; regulator

$$\exists F : R_B(a_c) \xrightarrow{F} R_{B'}(a'_c)$$

and $T \xrightarrow{F} T$

- □ Sturm-Liouville eigenvalue prob.
 - **BC** at finite a_c
 - \square complete set $|\lambda\rangle$
- $\Box \quad \text{Hermiticity:} \ (H + \mathscr{L}_B)^{\dagger} = H + \mathscr{L}_B$
 - Bloch operator

$$\mathscr{L}_{BC}\psi_c^{(+)} = 0 \Leftrightarrow \frac{1}{r_c\psi_c^{(+)}} \frac{\partial}{\partial r_c} r_c\psi_c^{(+)}\Big|_{a_c} = B_c$$

T matrix

$$T = O^{-1} \frac{R_L}{O^{-1}} - O^{-1} F$$

$$B_{c} = L_{c} = \frac{r_{c}}{O_{c}} \frac{\partial O_{c}}{\partial r_{c}} \Big|_{r_{c} = a_{c}}$$
$$R_{B}^{-1} + B = R_{B'}^{-1} + B'$$

Analyses

□ ⁵He

R-matrix analysis of ⁵He system

⁵He Analysis

Channel	Imax	a _C (fm)
d-t	5	5.1
n- ⁴ He	5	3.0
n- ⁴ He*	1	5.0
γ - 5He	1	60.

Reaction	Energy Range	# Obs. Types	# Data Points	χ2
T(d,d)T	E _d =0-8.6 MeV	6	700	1231
T(d,n) ⁴ He	E _d =0-11 MeV	14	1185	1523
T(d,n) ⁴ He [*]	E _d =4.8-8.3 MeV	1	10	18
T(d,γ) ⁵ He	E _d =0-8.6 MeV	2	17	29
⁴ He(n,n) ⁴ He	E _n =0-28 MeV	2	817	1117

Totals

2729

3918

parameters = $117 \Rightarrow \chi^2$ per degree of freedom = 1.50

25

[109 phase parameters are necessary to describe the S matrix at a single energy]

⁴He(n,n)⁴He differential cross section

42

Integrated cross section

