Overview of ${}^{12}C(\alpha, \gamma){}^{16}O$

Carl R. Brune

Ohio University

 $29 \ \mathrm{June} \ 2016$

The 2016 R-Matrix Workshop on Methods and Applications June 27 – July 1, 2016 Inn & Spa at Loretto, Santa Fe, New Mexico, USA

Hydrostatic Fusion Stages

Figure courtesy of Dan Sayre.

Sensitivity of Supernovae Isotope yields to ${}^{12}C(\alpha, \gamma)$

- ▶ Calculations by Tur, Heger, and Austin (2007).
- ▶ Uses Kepeler code developed by Weaver, Woosley, and collaborators.
- ► Varies ${}^{12}C(\alpha, \gamma)$ rate, starting from Buchmann (1996): S(300 keV) = 146-keV-b.
- ▶ Preferred multiplier is 1.2, with an error for $\approx 25\%$.
- Other uncertainties: semiconvection, overshoot mixing, explosion mechanism,...
- ► Tail wagging the dog?

The Challenge

- Extrapolation to low energies is required. More challenging than the typical data evaluation problem.
- Experimental challenges: small cross sections (E1 surppressed).

${}^{12}C(\alpha, \gamma){}^{16}O$: Important Energy Levels

Physics: Subthreshold resonances and interference

Note: Combination of experiment and theory required to obtain S(300). Subthreshold resonances along with their interference must be considered in the theory.

A partial level diagram

In Many Ways ${}^{12}C(\alpha, \gamma)$ is Ideally Suited for *R*-Matrix Analysis

- The α and ¹²C are spin zero.
- ▶ The density of levels is relatively low.
- High three-body thresholds ($\approx 20 \text{ MeV}$).
- ▶ Can be treated as a single-channel problem to a reasonable approximation.
- ▶ If you are a student interested in how *R*-matrix works with a Coulomb force...

 $^{12}C(\alpha, \gamma)$ has been a Mother of Invention for the Phenomelogical *R*-Matrix

- Willie Fowler (1967) estimated the reaction rate considering just the subthreshold 1⁻ level, with Γ_γ taken from experiment and the reduced α width estimated from shell model calculations and transfer reactions.
- ► Fred Barker (1971) provided the first comprehensive *R*-matrix analysis: simultaneous description of ${}^{12}C(\alpha, \gamma)$, ${}^{12}C(\alpha, \alpha)$, and ${}^{16}N(\beta\alpha)$.
- ▶ Hybrid Model (Koonin *et al.*, 1974), *K*-matrix theory (Humblet *et al.*, 1976).
- ► Alternative parameterization (Brune, 2002).

Indirect Methods

- ► Key *R*-matrix parameters are the γ_{α} for the subthreshold states (particularly the 1⁻ and 2⁺). These quantities can also be expressed as Asymptotic Normalization Constants (ANCs).
- ▶ The 1⁻ ANC can be constrained by the ${}^{16}N(\beta\alpha)$ spectrum.
- ▶ The ANCs can extracted from sub-Coulomb α transfer reactions, e.g ${}^{12}C({}^{6}Li, d)$ and ${}^{12}C({}^{7}Li, t)$. See Brune *et al.* (1999), Avila *et al.* (2015).
- Regarding transfer reactions, the upside is that the quantity of interest is directly proportional to the measured transfer cross section. However, one must consider additional systematic (theoretical) uncertainties.
- Note also that if the ANCs are assumed to be known, then we are determining S(300 keV) by *interpolation* rather than extrapolation.

The Motivation to Extend Analysis to Higher Energies

• $R_{cc'} = \sum_{\lambda} \frac{\gamma_c \gamma_{c'}}{E_{\lambda} - E}$ + background pole(s)

▶ By explicitly including higher-energy levels, the strength of the remaining background is diminished. This is advantageous if the higher-energy levels can be constrained by data.

Global *R*-Matrix Analysis

James deBoer (leader), R.E. Azuma, A. Best, C.R. Brune J. Görres, S. Jones, M. Pignatari, D. Sayre, K. Smith, E. Uberseder, M. Wiescher.

▶ Bound state information $(E_x, \Gamma_\gamma, \text{ANCs})$ also fitted.

Fits to Ground-State ${}^{12}C(\alpha, \gamma)$ Angular Distributions

Dyer and Barnes (1974, green diamonds), Redder et al. (1987, brown stars), Assunção et al. (2006, black circles), Fey (2004, blue squares).

Interference in the E1 Ground-State Transition

▶ Key additional inputs: explicit inclusion of higher 1⁻ resonances, bound-state ANC.

•
$$\Delta \chi^2 = 324$$
; note also $\Delta \chi^2(5\sigma) = 169$.

Transition to the 6.05-MeV State of 16 O

Matei et al. (TRIUMF, 2006, black/blue); Schuürmann et al. (Bochum, 2011, green stars).

Check of Ground-State S-factor Data at Even Higher Energies

▶ Differential S-factor data of Snover *et al.* at $\theta_{\text{lab}} = 52^{\circ}$.

▶ Background poles placed at $E_x = 40$ MeV.

Summary of Results at E = 300 keV

- $\blacktriangleright~E1$ ground-state S factor: 86 keV-b
- \blacktriangleright E2 ground-state S factor: 45 keV-b
- \blacktriangleright Cascade S factor: 7 keV-b
- ▶ Total S factor: 140 keV-b
- Estimated Uncertainty:

Reaction Rate

Present result (red), Kunz et al. (blue), NACRE (black).

Future Work

▶ Direct Measurements:

regular kinematics (especially low energies) inverse kinematics / recoil separator (cascades) inverse reaction: $^{16}{\rm O}(\gamma,\alpha)$

- α transfer reactions
- ▶ Precision measurments are generally useful
- I would like to use this opportunity to urge
 Experimenters to report primary data with sufficient documentation
 - R-Matrix Fitters to report their parameters and other information necessary to reproduce the fit

Thanks:

- Fred Barker, Gerry Hale, and Jean Humblet for answer my *R*-matrix and scattering theory questions in the mid 1990s
- Dick Azuma, Charlie Barnes, and Lothar Buchmann for various discussions regarding ¹²C(α, γ)
- Catalin Matei and Dan Sayre my Ph.D. students who worked on ¹²C(α, γ)
- ▶ Contemporary collaborators and students

Thank you for your attention.