The Galah Survey Forging connections in the solar neighborhood in the era of large scale stellar surveys

SVEN BUDER^{*} (MPIA HEIDELBERG) & THE GALAH SURVEY TEAM

* I AM MEMBER OF GALAH, GAIA-ESO, AND APOGEE: I CARE ABOUT THEM ALL AND HOW WE CAN IMPROVE!

SCIENCE GOALS

- Distribution function of stellar properties ([Fe/H], chemical composition, age, position, orbits)
- Chemical tagging (with up to 30 [X/Fe])
- Improve understanding of stellar physics/evolution

The second second

Sven Buder (MPIA)

UP TO 10⁶ SPECTRA

hot(ter) stars (v_{sini}), FGK dwarfs + giants, cool dwarfs (TiO!), pre-MS stars, emission stars, binaries, ... + bad spectra Sven Buder (MPIA)

How to analyse 10⁶ spectra?

Problem 1: time/computational costs

Stellar physics-driven data analysis takes ~ 1h per star (on-the-fly syntheses of spectra from stellar models)

Problem 2: data-driven analyses need training/calibration

Purely data-driven data analyses do not use stellar physics priors

Solution:

Combine physics-driven analysis for small representative set with data-driven analysis on whole sample:

Spectroscopy Made Easy (SME) by Piskunov & Valenti (2017)

+ The Cannon by Ness et al. (2015)

THE CANNON (NESS ET AL. 2015)

Use linear algebra (e.g. quadratic model) to construct spectra from stellar labels (T_{eff}, log g, [Fe/H], ...)

$$\mathbf{f}_{n,\lambda} = \Theta_{\lambda}^T \cdot l_n + \text{noise}$$

 l_n fixed, train Θ_{λ}

 Θ_{λ} fixed, optimise l_n

Sven Buder (MPIA)

THE CANNON (NESS ET AL. 2015)

Use linear algebra (e.g. quadratic model) to construct spectra from stellar labels (T_{eff}, log g, [Fe/H], ...)

$$\mathbf{f}_{n,\lambda} = \Theta_{\lambda}^T \cdot l_n + \text{noise}$$

linear coefficient for logg:

Forging Connections 2017

Sven Buder (MPIA)

THE CANNON (NESS ET AL. 2015)

Use linear algebra (e.g. quadratic model) to construct spectra from stellar labels (T_{eff}, log g, [Fe/H], ...)

$$\mathbf{f}_{n,\lambda} = \Theta_{\lambda}^T \cdot l_n + \text{noise}$$

many properties can be used as a label: ..., ν_{mic}, ν_{sini}, [X/Fe], age, mass, E(B-V), A_K, BVRIJHK, ...

linear coefficient for logg:

Sven Buder (MPIA)

ACCURACY/PRECISION OF STELLAR PARAMETERS

validation/calibration with non-spectroscopic information

Sven Buder (MPIA)

ACCURACY/PRECISION OF STELLAR ABUNDANCES

placement p Line data (λ, f-value)

Broadening parameters Blends Instrumental characteristics Hyperfine structure

Sven Buder (MPIA)

ACCURACY/PRECISION OF STELLAR ABUNDANCES

Tellurics

Sky, DIBs

Atmospheric structure

Level populations

Buder et al. (in prep)

NLTE corrections by A. Amarsi (ANU -> MPIA)

ABUNDANCES FROM THE GALAH+TGAS DWARFS

Buder et al. (in prep) based on homogenous study of Galah dwarfs in Gaia DR1 TGAS

Light proton cap. Alpha

odd-Z + iron-peak

Almost all [X/Fe]: agreement with Bensby et al. (2014), Battistini & Bensby (2015, 2016)

$[\alpha/Fe]$ in our solar neighbourhood

Bensby et al. (2014) - 714 dwarfs

Thick disk	hαmr?*	Thin disk
a-enhanced		a-poor
old (> 8 Gyr)		young (< 8 Gyr)
	different kinematics*	

*Adibekyan et al. (2011)

Sven Buder (MPIA)

$[\alpha/Fe]$ in our solar neighbourhood

Bensby et al. (2014) - 714 dwarfs

Buder et al. (in prep) ~8000 Galah+TGAS dwarfs (with preliminary age estimates) Sven Buder (MPIA) Forging Connections 2017

$[\alpha/Fe]$ in our solar neighbourhood

α-elements trace SFH and show difference in thin/thick disk dichotomy (yields) global [α/Fe] vs. individual

Breakout Session?!

Element abundances: measurements vs. GCE models

Buder et al. (in prep) ~8000 Galah+TGAS dwarfs (with preliminary age estimates) Sven Buder (MPIA) Forging Connections 2017

$\left[\alpha/FE \right]$ from different elements & surveys

Galah+TGAS

MS + TO @Rsun

APOGEE DR13 RGB IR, R~23k, S/N > 100

0.0

0.5

 $) \begin{array}{c} \begin{array}{c} & 0.00 \\ 0.001 \\ 0.002 \\$ $\begin{array}{c} 3200 \\ (135037) \\ 3000 \\ (135037) \\ 3000 \\ 3$) Stars (125380) Stars (Stars (121444) 0057 Stars (121444) 0057

$[\alpha/Fe]$ from different elements & surveys

Forging connections with Galah

Light proton Alpha odd-Z + iron-peak $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_$

(3D) NLTE

Chemical tagging (1 Mio.★)

[X/Fe] Sven's $[\alpha/{\rm Fe}]$ 0.250.00 +ages - chemo-dynamic -0.50.0 0.5-0.50.0[Fe/H] [Fe/H] +dynamics sandbox 2 4 6 8 10 12 $25 \ 50 \ 75 \ 100125150175$ Median (Age) [Gyr] Stellar density

My idea for breakout session(s): Stellar surveys vs. GCE for $[\alpha/Fe]$ (+25 [X/Fe])

Forging Connections 2017

2 birds - 1 ... @galahsurvey!

Sven Buder (MPIA)