Extragalactic Archeology

Man Marine Mari

M

Charlie Conroy Harvard/CfA

MMM

Mann

Quiescent Galaxies: Formation & Evolution

Big Questions

- 1. How do they form?
- 2. How do remarkably uniform objects emerge from such violent histories?
- 3. What information is stored in the radial variation in stellar properties?
- 4. What do their present-day properties tell us about their formation epochs?
 - "extragalactic archeology"
- 5. How do we connect galaxies across epochs?
 - *"extragalactic chemical tagging"*

Clues from Element Abundances: The Stellar Mass-Metallicity Relation

Clues from Element Abundances: α -enhanced Massive Galaxies

Worthey et al. 1994 Trager et al. 2000 Thomas et al. 2005 Conroy et al. 2014

Individual Stars vs. Integrated Light

Stellar Population Synthesis

Conroy, ARAA (2014)

Element sensitivity

σ=150 km/s; R~1000

Element sensitivity

σ=150 km/s; R~1000

Insights from Abundance Patterns

Milky Way Stars

"Chemical Evolution Modeling"

- SNe yields
- Initial mass function
- Chemical mixing
- Star formation histories
- Inflows and outflows

Conroy, Graves, van Dokkum 2014

The α -elements

Conroy, Graves, van Dokkum 2014

The iron-peak elements

Conroy, Graves, van Dokkum 2014

Chemical Evolution Models

Leibler, Conroy, Ramirez-Ruiz, in prep

Nomoto et al. 1984

The abundance pattern of the Sun

Asplund et al. 2009 (ARAA)

The abundance pattern of quiescent galaxies

• Simple picture of shorter star formation timescale for more massive galaxies qualitatively explains this trend. No quantitative comparison to models yet.

The AGES Survey

- 7.7 sq deg spectroscopic survey of the Bootes field in the NOAO Deep-Wide Field Survey
- I<20 selection; 0.1<z<0.7
- 23,000 redshifts via MMT/Hectospec
- Typical continuum S/N of 5-10
- Stack spectra in bins of z, logM

Kochanek et al. 2012

Evolution of Quiescent Galaxies to z=0.7

A Massive Quiescent Galaxy at z=2.1

Selected from the 3D-HST grism survey z=2.1; H=20.8 (extremely bright) Stellar mass ~ $10^{11.5}$ M_{sun} R_e = 2.1 kpc SED shows no evidence for young stars (*quiescent*)

Keck/MOSFIRE Observations

Data

- ~33 hr total observations
- Deepest NIR spectrum to-date of a quiescent galaxy at z>2
- S/N~10-20 per pix

Modeling

 Parameters include: z, σ, age, metallicity, abundances of C, N, Mg, Ca, Ti, Fe

Kriek, Conroy, et al. (Nature, 2016)

A chemically-extreme stellar population

The highest [Mg/Fe] ratio measured from the integrated light of a galaxy to date

Kriek, Conroy, et al. (Nature, 2016)

Extremely Rapid Mass Buildup

Abundance pattern consistent with star formation occurring over ~0.1 Gyr

SFR ~ $10^3 M_{sun}/yr$

Summary & Connections

- Modeling absorption line spectra has revealed that massive quiescent galaxies are both metal-rich and α -enhanced
 - Suggests very short star formation timescales (<1 Gyr!)
 - Puzzle: explain positive correlation between [Fe/H] and [Mg/Fe]
- Measurement of element abundances of quiescent galaxies across cosmic time places strong constraints on formation pathways
 - Suggests that the inner regions of massive galaxies assembled early (z~2-3?); subsequent evolution was "passive"
- Abundance ratios within the quiescent galaxy population offer a unique constraint on stellar yield tables (e.g., Co vs. O vs. Ca).
- Quantitative, accurate models for converting abundance ratios into star formation timescales would be a tremendous advance in this field. We are still (mostly) in the "back of the envelope" era