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1. Laser Nuclear Physics, the New
opportunities

- Second beams (p/D/e/g/n)

2. Laser for Applied Nucl. Phys.
- Non-destructive detecting
> Medical Phys.

3. Laser Nuclear Astrophysics

> Nucleosynthesis in stars, in the Big Bang
- D+D; D+Li
- EM field and Nucleosynthesis

4, Summary



Higher Intensity Laser-
Nucl. Phys. & Part. Phys.
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G. Mourou, T. Tajima, Science 331,41 (2011)



» Laser Nucl. Mech.
- Direct Eff.
- Energy : En=E*q*dL v
- 1022W/cm2=>»potential=1eV
- Nucl. “photoelectric eff.”

- Indirect Eff.
- Electron =»Acc. in Laser

- =»2nd heams
- =»Nucl. Reaction
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Laser Acc. in Short

e in gas ion in Film
| TNSA
LWFA  (Laser Wake-Field (Target Normal Sheath
Acceleration) Acceleration)
Laser foil MeV/u
| > 10'° W/cm? protons
[A schematic drawing of the principle of acceleration an d io ns

Electrons Laser pulse

Laser pulse

Supersonic gas jet

A schematic drawing of an
experimental arrangement

High energy beam
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laser pulse + ultra-thin foil electrons leave the foil
—> fully ionizing the fail.
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» Extreme conditions brought by High-Intensive Laser

« Ultra-Narrow Pulse(e/p/gamma/n)
 Ultra-high E-Field (1011V/m)
 Ultra-high B-Field (102-105°T)

« Ultra-high pressure(101! bar)

« Ultra-high Temperature (10°-1019K)
» Very high Peak Current (100kA)

Extreme Conditions can NOT be achieved by traditional Acc.



Where the NEW Phys. ?

» Extreme Laser = New App.; New Fund. Phys.

- Second Beam (p, D, alpha, e, e*. n...)
* Nucl. Energy
- Nucl. Waste Processing
- n. gamma no-destructive detecting
- Med. isotopes
- Strong EM conditions
- Vacuum properties (QED)
- Unruh-Hawking Rad.
> Nucl. Astrophys.
- in Earth based Labs(?)
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Fast n photograph

X-ray cross section
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« Texas PW laser
« 150fs,90],1057nm
« 10um-focus, 0.02-3um

target thickness

- 1.1E18 n/cm?/s achieved,
Compared with 1E22
n/cm2/s in supernova

51 mm

FIG. 1 (color online). Depiction of the experimental setup. The H O p efu | I y’ Ca n Stu d y r_

targets are 0.02-3 pm thick plastic foils. process With this Setup
PRL 113, 184801 (2014)
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Very high intensity (104
photons/(s*eV)

Narrow bandwidth (down
to 0.5%)

High degree of
polarization (> 99%)
Small beam diameter
(mm range)

Low duty factor (100 Hz)
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Electromagnetic Dipole Response in Nuclei
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Nuclear fluorescence Detecting

rotoatel

MEGa-ray Deam absorpoon technoiogees curantly Lnder davelopment could detect
peac of urarsuam-235 smadlar than S milmaters i less than 3 second. Thes speed and
2OXACY Wwould make the MEGa ray system an excellent tool for examenng Carngo
cordarvers, trucks, and other loads on the move.
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a Unruh Rad. Setup
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PFS
ump laser
(TW or PWV) 30 ps)
laser beam
.=, e |
capillary  (MeV-GeV)
mirror (gas-filled) or

thin DLC foil
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Laser Plasma Collider
for
Nuclear Astrophysics
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"Full Plasma” Conditions for low nuclear studies?

“Full Plasma” is needed for Nucl. Astrophys. etc.
Traditional Accelerator can not provide “Full Plasma”
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Motivation:

Why Full Plasma?

Nuclear Parameters may be also diff in plasma or boundary
states.

Be
7Beneutral t112 =52d :
"Be4* : Stable !

125Te 1st ex. st. (Z=52, E=35.5 keV)

Q=0 T,.=1.5 ns (internal conversion + M1)

Q=47* T, =6t 1ns F.Attalah et al., Phys.Rev.Lett. 75(1995) 1715



Motivation:

6,7Li abundance
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"Li/H (x107'%) ®He/H, D/H (x107°)
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» NIF (National Ignition Facility)
» ELI-NP (Extreme Light Infrastructure)

» Shen- Guang Laser FaC|I|ty

N S |
A Hohlraum !
&3 5

Temperature >108 K

Radiation
Temperature >3.5 x >106 K

Densities  >103 g/cm3
" Pressures  >10'1 atm

. ANIF-0706-12555112

- _— o
NIF is a three football
» stadium-sized laser,

e which delivers ~1.8 MJ
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CNO Cycle cross section measurements
possible at NIF

First proposed by Bethe in 1938
Important Hydrogen-burning
mechanism in massive stars

Makes =1.7% of all Helium in low-
mass stars like the sun

Very massive stars have two other
minor CNO cycles

Measured down to kgT=8 keV
“Gamow” window near 2 keV

Reactions that lead to radioactive
products are best for NIF

1

Products formed at k3 7<6 kel”

Reaction (cycle #) | Products/shot
2CHp. )N D) ~1 x 107
4N(.y)PO (I) ~2 x 10°
One could study this with 160(p,y)I’F (II) ~7x10°
a C.H, capsule shot 70, )"°F (1) =7 x 10°

() Positron




.01
Nuclearfusionfromexplosions
of femtosecond laser-heated
deuterium clusters

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays
& K. B. Wharton

Laser Program, L-477, Lawrence Livermore National Laboratory, Livermore,
California 94550, USA

As a form of matter intermediate between molecules and bulk solids,
atomic clusters have been much studied’. Light-induced processes in
clusters can lead to photo-fragmentation™ and Coulombic fission®,
producing atom and ion fragments with a few electronvolts (eV) of
energy. However, recent studies of the photoionization of atomic

NATURE|VOL 398|8 APRIL 1999 | www.nature.com

Laser: 120 mJ, 35fs, 10Hz

Laser Intensity: 2 x10'® W/cm?

Gas Density: 1.5 x10"° /cm3

Cluster Size: 50 Angstroms

Cluster gas jet: Deuterium, cooled (-170 OC)

D +D — He3+n

Fusion events between

1\ Exploding,
+ laser heated
' clusters

e

Laser focal diameter

ions from nearby clusters

Figure 1 Layout of the deuterium cluster fusion experiment.

#2 ©® 1999 Macmillan Magazines Ltd

Neutron Yield

Changbo@20T6WinterSchool
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A schematic drawing of the principle of acceleration
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“Laser Plasma Collider”

Laser Plasma Trad. Collider

Collider

Pulse
Peak Density

charge
Repeat frq.
Cost

Size

Beam Quality

Very narrow >ns

Very large Small
Neutral charged
Very low High
Low High
Small Large
Bad good

Changbo@2016Winter School

25



5 Experimental Setup

Replaceable target EJ-301 liquid
emm T — - Scintillator No.4
, ><!§< ‘S.Om
\\\\ “
_____________ Plastic scmtlllator No.1

Probe beam

Plastic No.2
scintillators#-2 Bb

\ 9l
N(a 5.2m No.2
NO. Ly« EJ-301 liquid /"1 _Igm

53m Scintillators filter prism interferometer
Laser: 8X2501]

—— ————

.
————————————

53m™ No.3
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Target before and after shot
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Where did the n products come from’
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Driving Force
Gradient of Temperature

Gradient of Density (Biermann Battery

Effect) Vn, X VT,
Scattering (EM, Nuclear Force, Maybe)
EM (Large Scale)

Laser EM (1E15H2z)
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PRL.111(2013)235003

Electron (NOT Ion)
obtains high energy
from Laser field

Electrons fly away,
Drag the Ions
together

e-e; e-i;
E field
M field strength

Reynolds Number
>20

Our neutron
Yields
consistent with
the prediction

I-1 scattering
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RELATIVE PROBABILITY
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Acc. Mech. In CLP

Plasma Eff. (e shielding)

3 ' Sun )

Example 2 R
Li at Sun’s surface is el TR
140times lower thanth 7, "1, @.ﬁ% R

original Sun off "t S |
(Nature464(2009)189 1 | E
Lithium in Sta rS W/ 5,700 5,750 . 5,800 5,850

Figure 1| Lithium abundance plotted against effective temperature in
p I a n ets & W/ O p I a n ets solar-analogue stars with and without detected planets. The planet-

hosting and single stars are shown by filled red and empty black circles,



Astrophysical Shocks:
M=2 to relativistic;
n=0.01 to 1E10/cm3

Solar Corona/Wind:
M=1.5to 20;
n=1to 1E8/cm3

X-ray., Gamma-ray
Energetic Particles



The following may play very imp. roles:

Thermal Unequ.
All obs. (except neutrino) from Surface

Self-generated EM field
Battery eff.

Neutral Plasma Flux



T15.0306\ l I
Titd-
Three body reaction? “ 5
» Three body reaction: v
- D47Li> s?/(o+) %/”//%
g.s. 774077 %
2>1ste,s.(2+)
—>2M e,s.(4+)
We try to find:
» CS diff of bounding states & plasma
e /Lj structure (P3315 e
‘///////4%7////////
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With helps of Lasers, one can study nuclear
astrophysics!

Laser Nucl. Phys.: Pros
Full Plasma
High Peak Intensity = Low Bkg
Quasi-thermal Distr.

Laser Nucl. Phys.: Cons
Unstable (currently)
Repeat Frg. Low
difficulties in Product Detecting
Quasi-thermal Distr.
Plasma Dynamics, Better Understanding needed



THANK YOU

for your

ATTENTION!

Changbo Fu, cbfu@sjtu.edu.cn



