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Overview

* Presupernova Evolution

* Nucleosynthesis

e Varieties of Stellar Deaths



Abundance by Weight

Universe Humans

Nitrogen 5%

Other 1% Oxygen 1%
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Isotope Decomposition by Process
(for illustrative purposes only)

40

D0

25

20

Z O un 7

u—P

Gamma
SN1TA

M

assive

BBN

H

GCR Spallation
Novae/Pri GCR/Nu

—burning

S;SNi 60, 6 62,

T I | T T T T ] T T T | | T T T T |

S

58

:_:CGl |

54
30Cr

B8

N
(&)

30 35

O_l 1 | 1 | | | 1 1 | I | 1 | | |

40 45

W

(Chris West 2010)



Chapter One:

Pre-Supernova
Evolution and
Nucleosynthesis
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log central temperature (K)

Once formed, the evolution of a star is governed by gravity:

10.0

9.5

9.0

8.5

3.0

7.3

continuing contraction

to higher central densities and temperatures

Fe

4 6 8

log central density (g cm_3)

10

Evolution of
central
density and
temperature
of 15 Mg

and 25 Mg
stars



¢36E€0ON




Part One:

Nuclear Burning
Stages




Hydrogen-Burning: pp Chains

Hydrogen burning

. . . . IH+ 1H & 2H4 et + v
\ \« H+ 'H— 3He+~
\§+l ) o \{_/ /\
.\20 2D /. ’He + *He —*He +2'H - He + “He — "Be ++
| \ / @& (ppl) A (18.62)
3He 3He ey @
.\ /. x/ = "Be+e~ — Li+v "Be+ 'H— *B+4
U\)‘ / "Li+ 'H — *He + *He 8B - %Be+et +u
. P /ZD‘“. _____(;;2_)—"__ 8Be — “He + “He
Hes<" = L e e i AT R e
O.; (pp3)
He

. Energy release:
7Bo Q(pp1) = 26.20MeV
_ y Q(pp2) = 25.67MeV
i e+‘{//88 ,/. I Q(ppS) — 19.20MeV
oBc . Reaction rate: (ov) oc T4



Hydrogen Burning: CNO Bi-Cycle

¢ 4 1, BNy
BN - BCtet+y
130 4 1H — 4N 4 4
SN+1H - PO+4
Bo 5 BN+et+v
15N + 1H — 12C +He
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Energy release:
Q(CNQO) = 24.97MeV

Reaction rate: (ov) o T1°

Branching:
CNO-1 : CNO-2 ~ 10,000 :



Hydrogen Burning: CNO Bi-Cycle

Usually the beta-decays are fast compared to the capture
reactions, (p,v).

101 71/ = 70 sec

0! 710 = 122 sec

SN: 74 0 = 10 min

VF: 7y ,0 = 64 sec

180: 79/ = 110min

“N(p,~) 0 usually is the slowest “bottleneck” reaction.
CNO cycle burning converts most CNO isotopes into *N.



Competition of Hydrogen-Burning Modes

Transition from pp-chains
In low-mass stars (low T)
to CNO chains

In high-mass stars (high 7T)




Hydrogen Burning by CNO Cycle

“normal” CNO cycle “hot” CNO cycle

temperature-sensitive temperature-insensitive
T < 8x107K T>8x107K T
8x 107K
time for an eddy to burn its 11h (0 .02 )( X, )

hydrogen content by hot CNO cycle T =



Helium Burning

O=0

Step 1:

! “*He + “He = °Be

() — r-26x10%se0> s BUIIL Up equilibrium abundance of 8Be
Lifetime of ®Be is only 2.6 x 10 1°s!

O et Step 2:
, ’Be + *He — °C 4+~

Q30 = 7.275 MeV

Y <ov>ox p*TH

— 8
T=10°%K —3  n(®Be) : n(*He) = 1: 10°
p=105gcm3



Helium Burning Level Scheme
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Additional Helium Burning Reactions

Oxygen Production
“*He + 12C — %0 ++

QR = 7.162 MeV

(ov) o pTH

The final abundance of carbon is set by the competition of 3a and
12C(ar, 4) 0 reactions;

The production of °0O can only start when a sufficient amount of
12C has been made.



Competition of Helium Burning Reactions
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- 12C Production
" as a function
of *C(a,y) and
3a reaction
rates

Carbon mass
fraction at the end
of helium burning
depends the
reaction rates and
the mass of the star

~2000 stellar
models

(West+ 2013)



Carbon and Oxygen Burning

Carbon Burning

Carbon burning

2+ 2C o P*Mg+y ., 13931

- o — BMg+n , —2.605

< ~— — BNa +p , 2238

— 2Ne +a , 4616

@ — %0 +2a, -0.114
Average Q = 13 MeV

Oxygen burning - Oxygen Burning
%0+ 1%0 » 328 +~4 | 16.541
[ 5 3P wp . 7677
Y W S 31
- —318 +n . 1453
\ > BSi +a . 9593

~ /
® /69 g S MMg+2a, —0.393
O Average = 16 MeV




Neutrino losses from
electron/positron pair annihilation

* |mportant for carbon burning e This is an important energy loss with
and beyond €,~-10" (T/10%K)° erg g' s™
* For carbon burning and beyond,
 For T>102K (about 100 keV), each burning stage gives about the
occasionally: same energy per nucleon, thus the
. i lifetime goes down as T
y— e +e
and usually
e"+e — 2y
but sometimes
e"+te — Vv, t+\V, The sun as
. seen by
Kamiokande

The neutrinos exit the stars at the
speed of light while the e™ e",
and the Y’s all stay trapped.




Neon Burning

Neon burning proceeds by a combination of photo-disintegrations
and « captures:

INe+ v — PO+ %He, Q= —4.73MeV

This reaction dominates over the inverse reaction known from
helium burning for T > 1.5 x 10° K.

Subsequently, the *He is captured on another “°Ne nucleus:
ONe 4+ *He — ?*Mg + ~.

The net result is
220Ne +~v — %0 +*Mg+~v, Q= +4.583MeV



Nuclear burnin
(20 M stars)

g stages

Fuel Main  Secondary T Time Main

Product %% (10°K) (yr) Reaction

H He uN  0.02 107 4HD e
He /0, C 180, 22Ne 0.2 106 3 Het > 12C
S-process 12C(a,y)'%0

C Ne, Na 0.8 103  12C + 12C

Mg

Ne /O,Mg ALP =45 3 L ue

O Si, S Cl, Ar, 2.0 0.8 160 + 160

/ K, Ca

Si,S Fe Ti,V, Cr, 3.5 0.02 *Siky,q)...

Mn, Co, Ni




Silicon/Sulfur Burning

Actually, often we have more sulfur in the star than there is silicon,
but it i1s custom to call this phase “silicon burning”.

Typical burning temperature is 3...3.5 % 10° K.

Similar to neon burning, silicon burning proceeds as a series of
photo-disintegration reactions, mostly, (v, &), and helium capture
reactions, () to build up iron group elements.

(v, ) = (@,7)

At the high T and p of these conditions, also weak reactions
occur, converting protons into neutrons and leading to a neutron
excess. This allows to actually make stable iron isotopes.



Beyond Silicon Burning

Log (X)

NEUTRON ENRICHMENT

NSE distribution for
T = 3.5 x 10° K,
p=10"g/cm?
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After silicon burning T and p is
so high that the nuclel are In
nuclear statistical equilibrium,
I.e., the reactions are fast
compared to the evolution
time-scale of the star, and the
abundance distribution of the
nuclei is given by a Saha
equation.



Summary of Energies

4
B |

Tihreshold Energy per A
Nuclear Fuel  Process 105K Products Nucleon (Mer'%
H p—p ~4 He 6.55
H CNO 15 He 6.25
He 3 100 C, O 0.61
C C+C 600 O, Ne, Na, Mg 0.54
O 040 1000 Mg, S, P, Si ~0.3

S1 Nuc. eq. 3000 Co, Fe, Ni <0.18 ==




Nitrogen Burning
“N(o,Y)"*F(B*v,)"®O(a,y)*’Ne

*'“N is made as slowest reactant in CNO cycle
It is made from initial metals, not as a primary product

 Depending on metallicity, the abundance can be come
significant; it will be more important for more metal-rich stars.

N burning occurs at the onset — before — central helium burning
and can have its own convective burning phase, take a few % of
helium burning time.
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