^{10,11}B(α ,n)^{13,14}N CROSS SECTION MEASUREMENTS

QIAN LIU

UNIVERSITY OF NOTRE DAME

2016

MOTIVATION

 $^{13}C(\alpha,n)^{17}O$ and $^{22}Ne(\alpha,n)^{25}Mg$ are neutron sources for the s-process

MOTIVATION

- ^{10,11}B(α,n)^{13,14}N are possible neutron background sources for underground measurements.
- Previously the differential cross section data has only been available at energies above E_{α} = 1.0 MeV by Van der Zwan and Geiger in 1973.
- The objective is to extend previous studies to lower energy.

SURF FACILITY LAYOUT (4850L)

WHY CHOOSE BORON?

Coulomb barrier dominates cross section at low energy

$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$

 $2\pi\eta = 31.29Z_1Z_2(\frac{\mu}{E})^{1/2}$

Important to characterize light-Z nuclei (α,n) background

WHY CHOOSE BORON?

A.Di Leva et al. PRC(2014) ¹⁷O(*p*,γ)¹⁸F -- Target: 31% ¹⁶O, 65% ¹⁷O, 4% ¹⁸O LUNA

Target Impurities: ^{10,11}B

¹¹B(α ,n)¹⁴N EXCITATION CURVE

11B(α,n)

Wang, Vogelaar and Kavanagh (1991)

³He Counter:

- Pros:
 - High Efficiency
- Cons:
 - No neutron energy info

SETUP USING LIQUID SCINTILLATORS

- ¹⁰B(α ,n)¹³N, $\sigma_{11B+\alpha} \gg \sigma_{10B+\alpha}$
- 5U accelerator
 - No TOF
- Deuterated Liquid Scintillator
 - Reference neutron detector EJ315 fixed at 45°
 - EJ301D mounted on a swing arm which covered a wide range of angles: 0°, 30°, 60°, 90°, 120°, 130°, 155°
 - Use Unfolding Technique
- HPGe γ detector fixed at 130°

NEUTRON UNFOLDING

Figure 3.9 - Graphical interpretation of Equation 3.15.

Michael Febbraro, PhD Thesis, University of Michigan(2014)

Fig. 8. Unfolded neutron spectrum from the ${}^{13}C(\alpha,n){}^{16}O$ reaction at E_{α} = 7.5 MeV.

Maximum-Likelihood Expectation-Maximization (MLEM)

M.Febbraro et al. (2015)

PRELIMINARY RESULTS

Neutron Gate defined by
$$\frac{a}{\sqrt{x}} + b + c * x$$

Q Values:

¹¹B(α,n)¹⁴N: 0.16 MeV

¹⁰B(α,n)¹³N: 1.06 MeV

¹³C(α,n)¹⁶O: 2.22 MeV

MLEM Unfolding

¹⁰B(α ,n)¹³N EXCITATION CURVE

L. Van Der Zwan and K.W. Geiger (1973)

FUTURE PLAN

Angular Distribution Analysis R-Matrix Fit Investigate ${}^{10}B(\alpha, \alpha)$, ${}^{10}B(\alpha, p)$ ${}^{25}Mg(\alpha, n)$, ${}^{13}C(\alpha, n)$ with new array of 10 detectors

Continued measurement at CASPAR

COLLABORATORS

- Michael Febbraro
- Richard James deBoer
- Becca Toomey
- Steve Pain
- Bill Peters
- Jay Riggins

- Edward Stech
- Christopher Seymour
- Bryant Vande Kolk
- Yingying Chen
- Stephanie Lyons
- Michael Wiescher

National Science Foundation WHERE DISCOVERIES BEGIN