

Progress of nuclear astrophysics and JUNA project

Weiping Liu for SJTU winter school, Dec. 17, 2016, Beijing

China Institute of Atomic Energy (CIAE) Beijing, China wpliu@ciae.ac.cn

W. P. Liu, JUNA progress

Nuclear Astrophysics roadmap

W. P. Liu, JUNA progress

+

JUNA

What is Nuclear Astrophysics

- Extending between macro and micro world: nuclear physics and astrophysics
- Application of nuclear physics in energy production and element synthesis in star
- Determining time scales of evolution, star environment, isotope abundance
- In combination with astrophysical model and observation
- Using nuclear mass, cross section, half-life as input
- Difficulty: low cross section due to low energy and high isospin, many reactions and decays

Some of the great discovery of astrophysics

- 3K microwave background radiation, 1965, experimental support for Big-Bang theory
- Detection of solar neutrino, 1960, gave the hints of neutrino oscillation
- Detection of ²⁶Al γ-ray, 1980, direct support of explosive nuclear synthesis, and triggering γ-ray astronomy
- Detection of SN1987A supernova explosion, 1987
- Experimental explanation of solar neutrino missing, 2003

Contribution of nuclear physicist, Nobel prize of physics winner

 1930, Hans Bethe, pp chain, CNO cycle, 1967

 1957, William Fowler, star evolution, B²FH, 1983

 1960, Raymond Davis and Masatoshi Koshiba, neutrino detection, 2002

We are made of star staffs

- Abundance curve in star rock and our bone are the same, except for Si
- Mixing of many cycles and explosions
- Some reaction would change the world and ourselves completely, like ${}^{12}C(\alpha,\gamma){}^{16}O$

Nuclear reaction: alchemist in universe

Peak: finger print of nuclear physics: Shell model magic number

Shanghai2016

Weiping Liu

Nuclear astrophysics as frontier

- Greatest unanswered question of physics
- How were the heavy elements from iron to uranium made?

NSAC

- What is the origin of the elements in the cosmos?
- What are the nuclear reactions that drive stars and stellar explosions?

NUPPEC

How and where the elements are made?

Can we recreate on Earth, and understand, the critical reactions that drive the energy generation and the associated synthesis of new elements in the stars?

W. P. Liu, JUNA progress

Primordial and stellar elements syntheses

Astrophysical process in chart of nuclei

Interplay of frontier

Weiping Liu

Nuclear burning inside sun

Nuclear reaction network in the Sun

Weiping Liu

Challenge to experiment

- Ultra low cross section
- Many times, in-direct approach
- Low background underground direct measurements

Shanghai2016

Key scientific topics

- Direct measurements of cross sections for reactions in hydrostatic stellar burning
- Reliable extrapolation of high-energy charged-particle reaction cross sections to domains of astrophysical interest
- Indirect measurements of nuclear reaction cross sections critical to the explosive rp- and r-processes
- Measurements of masses, decay and resonance-state properties of nuclei involved in the rp- and r-processes
- Theoretical calculations of nuclear decay properties and reaction rates, including those for neutrino-nucleus interaction
- Effects of neutrino oscillations and neutrino-nucleus interaction on stellar explosion and nucleosynthesis
- Buildup of databases and network codes
- Observations of element abundances in stars and implications for the sites and mechanisms for nucleosynthesis.

Shanghai2016

Weiping Liu

Distribution of task force

(GSI, German; U. Tokyo, Japan; U. Paris, France; LBNL; JINA)

Element synthesis network

$$\frac{dY_i}{dt} = \sum_j N_j^i \lambda_j Y_j + \sum_{j,k} N_{j,k}^i \rho N_A < \sigma V >_{jk,i} Y_j Y_k$$
$$+ \sum_{j,k,l} N_{j,k,l}^i \rho^2 N_A^2 < \sigma V >_{jkl,i} Y_j Y_k Y_l$$

Decay half-life

Shanghai2016

Weiping Liu

How elements become heavier

Abundance curve

Abundance curve

The importance of one and more experiments

- Key reaction, most difficult, like ${}^{12}C(\alpha,\gamma){}^{16}O$, ${}^{7}Be(p,\gamma){}^{8}B$
- Supporting reaction, large numbers, like ¹¹C(p,γ), ⁸Li(α,n)
- Importance of international collaboration, data evaluation and compilation
- Importance of theoretical calculation, fill the impossible

Status in China

- Theoretical (Network, neutron star, ...)
- Observation (LAMOST, Yangbajing, Daya Bay)
- Nuclear physics experiments (Beijing, Lanzhou)
- Major research project MOST funds and group funds (RNB & astrophysics)
- Network calculation (Exp + The)
- International collaboration (TRIUMF, Bochum, JINA, RIKEN, GSI, MSU...)

Important nuclear physics data

- S-factor, focus on NP, down to astrophysics energies
- Reaction rates, direct input to network calculation
- Direct capture, direct reactions
- Resonance, level scheme, level width, and partial width
- Mass and decay half-life and branching ratio

Reaction rates

$$\langle \sigma v \rangle = \int_0^\infty \phi(v) \sigma(v) v dv.$$
 (1)

Maxwell-Boltzmann speed distribution is

$$\phi(v) = 4\pi v^2 \left(\frac{\mu}{2\pi kT}\right)^{3/2} \exp\left(-\frac{\mu v^2}{2kT}\right),\tag{2}$$

In which, μ , k and T is reduced mass Boltzmann constant and star temperature respectively. It can be simplified into,

$$N_A < \sigma v >= 3.7313 \times 10^{10} \mu^{-1/2} T_9^{-3/2} \int_0^\infty \sigma(E) E \exp\left(-11.605 E/T_9\right) dE, \quad (3)$$

Where the reation rate $N_A < \sigma v >$ is in the unit of cm³mol⁻¹s⁻¹ and center of mass energy *E* and corss section σ are in the unit of MeV and b.

C.E. Rolfs and W.S. Rodney, Cauldron in the Cosmos, The University of Chicago Press, (1988).

Shanghai2016

Weiping Liu

Astrophysical S-factor

The reaction cross section can be re-scaled into astrophysical S-factor,

$$\sigma(E) = S(E) \exp(-2\pi\eta) \frac{1}{E},$$
(4)

Where η is Sommerfeld constant,

$$\eta = \frac{Z_1 Z_2 e^2}{\hbar v} = 0.1575 Z_1 Z_2 (\frac{\mu}{E})^{1/2},\tag{5}$$

Where \hbar is reduced Plank constant, Z_1 and Z_2 are atomic number, E is the center of mass energy in MeV.

C.E. Rolfs and W.S. Rodney, Cauldron in the Cosmos, The University of Chicago Press, (1988).

Energy dependence of cross section and astrophysical S-factor

Gamow window

$$N_A < \sigma v >= N_A (\frac{8}{\pi \mu})^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \exp(-\frac{E}{kT} - \frac{b}{E^{1/2}}) dE, \qquad (6)$$

b come from Coulomb penetration

$$b = (2\mu)^{1/2} \pi e^2 Z_1 Z_2 / \hbar = 0.989 Z_1 Z_2 \mu^{1/2} (\text{MeV})^{1/2}.$$
 (7)

Its square is so called Gamow energy E_G .

In exponential part of Equ. 6, the first term come from Maxwell-Boltzmann velocity distribution, the second term is Coulomb term, the interplay of two terms reach a maximum in E_0 , as shown in Fig. 4. Where the effective mean energy E_0 can be expressed as:

$$E_0 = (bKT/2)^{2/3} = 1.22(Z_2^1 Z_2^2)^{1/3}$$

 μT_6^2)^{1/3}*keV*(8) It is E_0 that is most important parameter for experimentalists to reach directly or in-directly. For system p+p, , for sun $T_6=15$, E_0 is only 5.9 keV!

The Gamow window

Resonance capture

The resonance capture reaction cross section can be expressed by Breit-Wigner formula [17],

$$\sigma_{BW}(E) = \pi \frac{\hbar^2}{2\mu E} \frac{2J_R + 1}{(2J_1 + 1)(2J_2 + 1)} \frac{\Gamma_{in}(E)\Gamma_{out}(E)}{(E - E_R)^2 + (\Gamma_{tot}/2)^2},$$
(9)

Where J_1 , J_2 , J_R is the spin of beam, target and compound state respectively, Γ_{in} , Γ_{out} are entrance channel partial width, Γ_{tot} is the total width.

World underground labs

W. P. Liu, JUNA progress

JUNA

GRAN SASSO

W. P. Liu, JUNA progress

SNO lab

W. P. LIU, JUINA progress

JUNA

DUSEL

W. P. Liu, JUNA progress

KAMIOKA

W. P. Liu, JUNA progress

JUNA

Underground nuclear astrophysics

- Direct is the way to get rid of model dependence
- Direct in Gamow window have to go underground
- Underground is list in top priority
- Many world lab planned, with LUNA operational

From X. D. Tang

JUNA

The importance

JUNA

• NuPPEC

Over the last decade our understanding has progressed tremendously due not least to significant experimental advances connected to the use of the Gran Sasso deep underground accelerator ... Providing an underground multi-MV accelerator facility is a high priority. There are a number of proposals being developed in Europe and it is vital that construction of one or more facilities starts as soon as possible.

Why underground

JUNA

Direct→in-direct→theory→network : direct is essnetial

Shanghai2016

Weiping Liu

Why underground

JUNA

Shanghai2016

Nuclear astrophysics direct

JUNA

Shanghai2016

LUNA progress

- LUNA
- Only Nuclear astrophysics under ground
- 50 kV and 400 kV

How to deal with low rate

SITE	INT	BG	CTS	XSEC
ground	1 mA	1800/hour	20/hour	10 ⁻¹² b
LUNA	1 mA	20/day	1/day	10 ⁻¹⁵ b
JUNA	10 mA	6/month	10/month	10 ⁻¹⁶ b

¹²C(α,γ)¹⁶O Importance

JUNA

The determination of the ratio C/O produced in helium burning is a problem of paramount importance in Nuclear Astrophysics. *W. Fowler, Nobel lecture, 1983* The fusion of ⁴He and ¹²C nuclei to ¹⁶O is the most important nuclear reaction in the development of massive stars. *NuPECC Long Range Plan 2004*

世界上最先进的深地低能加速器装置

JUNA

加速离子		束流, mA	能量范围, keV
	H+	~10 (0.5)	50~400 (<mark>400</mark>)
	He+	~10 (<mark>0.3</mark>)	50~400
	He ²⁺	~5 (无)	100~800 (无)

Weiping Liu

Shanghai2016

LUNA experiments

³He(³He,2p)⁴He

JUNA ³He(³He,2p)⁴He PRL82(1999)5205 ²H(³He,p)⁴He PLB482(2000)43 $^{2}\mathrm{H}(\mathbf{p},\gamma)^{3}\mathrm{He}$ NPA 706(2002)203 ³He(α,γ)⁷Be PRL 97(2006)122502 ¹⁴N(**p**,γ)¹⁵O PLB 591(2004)61 $^{15}N(p,\gamma)^{16}O$ PRC82, 055804(2010 ¹⁷O(p,γ)¹⁸F PRL 109, 202601(2012 $^{25}Mg(p,\gamma)^{26}Al$ PLB 707(2012) 60

¹⁴N(p,γ)¹⁵O

W. P. Liu, JUNA progress

Annu. Rev. Nucl. Part. Sci. 60:53-73

Physics focused

Physics	Reaction	Current	Desired
Massive star	¹² C(α,γ) ¹⁶ O	60% 890 keV	20% 220-380 keV
s-process neutron source	¹³ C(a,n) ¹⁶ O	60% 279 keV	10% 140-230 keV
Galaxy ²⁶ Al source	²⁵ Mg(p,γ) ²⁶ AI	20% 92 keV	5% 50-300 keV
F aboundace	¹⁹ F(p,a) ¹⁶ O	80 % 189 keV	5 % 50-250 keV

JUNA CJPL underground laboratory **CJPL** 2400 m CHINA 7<mark>0</mark>0m Most deepest Y2L 800m KORE Canfranc space by hydro-**SPAIN** 1100m 600m Boulby Soudan 100m 藏 1000m UK 1400m NGS US Kamioka 甘露 15<mark>0</mark>0m INO ITALY JAPAN DUSEL 1600m INDIA US Baksan RUSSIA 1700m horizontal Modane FRANCE 2300m2000m **SNO** vertical CANADA Bat A

China Jinping underground lab (CJPL) hight~2400m length~8km CJPL-I **Travel tunel**

W. P. Liu, JUNA progress

CJPL and CJPL-II

CJPL advantage

CJPL-I experiments

W. P. Liu, JUNA progress

CJPL-II experiments

LXe PANDAX+ Nuclear Astrophysics JUNA 400 kV

HpGe CDEX +

More experiments...

CJPL-II structure

W. P. Liu, JUNA progress

CJPL-II floor plan

锦屏地下实验室二期建设规划布置图 1:1000

CJPL-II 100k m3 , 8X12m*12m*150m

W. P. Liu, JUNA progress

CIAEUNA Pl introduction IMP THU Group leader SJTU Weiping Liu¹, Zhihong Li¹, Jianjun He², Xiaodong Tang², Gang Lian¹, Zhu An⁴, Qinghao Chen³, Xiongjun Chen¹, Yangping Chen¹, Zhijun Chen², Baoqun Cui¹, Xianchao Du¹, SCU Changbo Fu⁵, Lin Gan¹, Bing Guo¹, Guozhu He¹, Alexander Heger⁶, Suqing Hou², Hanxiong Huang¹, Ning Huang⁴, Baolu Jia², Liyang Jiang¹, Shigeru Kubono⁷, Jianmin Li³, Kuoang Li², **SDU** Tao Li², Yunju Li¹, Maria Lugaro⁸, Xiaobing Luo⁴, Shaobo Ma², Dongming Mei⁹, Yongzhong Qian¹⁰, Jiuchang Qin¹, Jie Ren¹, Jun Su¹, Liangting Sun², Wanpeng Tan¹¹, Isao Tanihata¹², SZU Peng Wang⁴, Shuo Wang¹³, Youbao Wang¹, Qi Wu², Shiwei Xu², Shengquan Yan¹, Litao Yang³, Xiangqing Yu², Qian Yue³, Sheng Zeng¹, Huanyu Zhang¹, Hui Zhang³, Liyong Zhang², Ningtao Zhang₂, Qiwei Zhang¹, Tao Zhang⁵, Xiaopeng Zhang⁵, Xuezhen Zhang², Zimin $\bullet \bullet \bullet$ Zhang², Wei Zhao³, Zuo Zhao¹, Chao Zhou¹ ¹China Institute of Atomic Energy, Beijing, China, ²Institute of Modern Physics, Lanzhou, China ³Tsinghua University, Beijing, China, ⁴Sichuan University, Chengdu, China ⁵Shanghai Jiaotong University, Shanghai, China, ⁶Monash University, Melbourne, Victoria, Australia ⁷RIKEN, Institute of Physical and Chemical Research, Wako, Japan, ⁸Konkoly Observatory of the Hungarian Academy of Sciences, Hungary, ⁹South Dakota State University, Xiaod **Brookings, South Dakota, US** 13**C** ¹⁰Minnesota University, Minneapolis and Saint Paul, Minnesota, US, ¹¹University of Notre Dame, Notre Dame, Indiana, US, ¹²Osaka University, Suita, Osaka, Japan lon ¹³Shangdong University, Beihai , China 1983

55 /10

JUNA

JUNA IAC

IAC, 305 m high dam

1st meeting July 2015, 1st formal IAC meeting March, 2016

JUNA funding

Detectors (NSFC \$1.3M)

Electronics, shielding (NSFC \$1.0M)

Ion source (CAS \$0.8M), accelerator (CNNC \$1.0M)

Lab CJPL II (CNNC, Tsinghua, NSFC \$1.2M)

total \$4.8+ M

Do step by step

High energy test in ground base, setup the basic feasibility

Middle energy test in CJPL-II site, compare with measured data, setup underground reference

Low energy hunting for long time, aiming at signal higher than background, or upper limit is unfortunate cases

JUNA plan

ECR sourceAcceleration Magnet

Detectors

Beam	Intensity, mA	Energy,keV
H+	10	70-400
He+	10	70-400
He++	2	140-800

Ground facilities

beam with 40 KV and 20 mA

> -6

f implantation target

Z (m)

JUNA

solid and gas detector and electronics

W. P. Liu, JUNA progress

没有加除本庭的y时或语(a),扣除宇宙射线本底后的y语(b)和从(b)中 扣除中子本底后的y语(c),模坐标为道数,纵坐标是归一化为一百小时内的计数

 $P^{2}H(d,\gamma)^{4}He$ 反应的截面为σ=2.9×10⁻¹¹b(1±40%) /10

lon source and accelerator

Ion source installed, 1 mA tested; 7/31/16 reach 16 mA in Oct.

Accelerator tank established 8/30/16

Accelerator tube check by NSFC

Type of background

Cosmic ray, mainly shielded by Jinping

Accelerator induced, estimated by simulation, tested in ground and underground base, improve the emittance and transmission Detector and shielding material, select the low background material and tested in CJPL-I

For four experiments

Goal: push 300 keV down to Gamow, precision from 30% down to 10%; clarify extrapolation, test Weaver and Woosely star evolution model, Phys. Rep. 227(1993)65 Method: He intensity, γ effciency, background, ¹²C implantation, R-matrix

Shanghai2016

Weiping Liu

¹³C(α,n)¹⁶O

> CIAE ¹³C(α , n)¹⁶O in-direct , IMP 300keV exp. plan

B.Guo et al., ApJ756(2012)193

Goal: push 270 keV down to Gamow, precision from 50% down to 20%; clarify resonance, pin down n source rate Method: n conversion, γ effciency

Weiping Liu

¹⁹F(p, α)¹⁶O

恒星氢燃烧阶段的核素演化路径

JUNA

10³

¹⁹F(p,a)¹⁶O 10² 10 10⁰ 反应产额 10-1 10-2 实验数据 10-3 理论计算 10-4 250 300 350 400 200 450 Ep (keV)

K. Spyrou et al., EPJA 7 (2000)79

¹⁹F(p, α)¹⁶O to (E_{c.m.}= 27~300 keV)

 $^{25}Mg(p, \gamma)^{26}Al$

⁶Al- β decay ²⁶Mg1809 keV γ

92keV 20% to 5%, and measure 58 keV

E [keV]ª	ωγ [eV]
304.0	$(3.08 \pm 0.13) \times 10^{-2}$ b
189.5	$(9.0 \pm 0.6) \times 10^{-7}$
130.0	$< 2.5 \times 10^{-10}$
92.2	$(2.9 \pm 0.6) \times 10^{-10}$

Shanghai2016

¹²C progress

Simulation fro BGO

implantatio n target tested 30/8/16

G. Lian

Test exp. SCU 12/16

69 /10

²⁵Mg progress

¹⁹F progress

W. P. Liu, JUNA progress

J. J. He

X. D. Tang

Target and shielding

Rotation target tested 30/8/16

W. P. Liu, JUNA progress

Lab construction

Accelerator floor plan

- Start design, will construction 2017 Jan.-June, very tight schedule
- Need to start CJPL-II JUNA lab construction, need formal confirmation of A1 space from management committee ASAP W. P. Liu, JUNA progress

HPGe and BGO background in CJPL-I

Duration	Contents
Mar May	Gamma
May - July	Gamma with shielding
Aug Oct.	BGO
Oct Dec.	Neutron

W. P. Liu, JUNA progress

JUNA

Detailed 5 year time table

Period/Task	Accelerator	Laboratory	Experiment	
2015 Q1-Q2	design, layout	layout	simulation, physics	
2015 Q3-Q4	parts fabrication	on site study	background, test	
2016 Q1-Q2	ion source, tube	design	background, prototype	
2016 Q3-Q4	assemble	detailed design	target test	
2017 Q1-Q2	beam on ground	construction	fabrication	
2017 Q3-Q4	on site tuning	fine tuning	ground test	
2018 Q1-Q2	He 2+ develop	shedding setup	¹⁹ F(p,a) ¹⁶ O, ²⁵ Mg(p,g) ²⁶ AI	
2018 Q3-Q4		new detector layout	¹³ C(a,n) ¹⁶ O	
2019 Q1-Q2			¹³ C(a,n) ¹⁶ O, ¹² C(a,g) ¹⁶ O	
2019 Q3-Q4			¹² C(a,g) ¹⁶ O	

JUNA expectation

reaction	beam	inten.	Ec.m.	cross section	target	eff.	CTS	BKD
		(emA)	(keV)	(mb)	atoms/cm ²	%	(/day)	(/day)
$^{12}C(\alpha,\gamma)^{16}O$	$^{4}\mathrm{He}^{2+}$	2.5	380	10-13	1018	75	0.7	0.7
$^{13}C(\alpha,n)^{16}O$	$^{4}\mathrm{He}^{1+}$	10	200	10^{-12}	10 ²¹	20	7	1
$^{25}Mg(p,\gamma)^{26}Al$	${}^{1}\mathrm{H}^{1+}$	10	58	$\omega \gamma 2.1 \times 10^{-13} \text{ eV}$	$0.6 \mu \text{g/cm}^2$	38	1.4	0.7
$^{19}F(p,\alpha)^{16}O$	${}^{1}\mathrm{H}{}^{1+}$	0.1	100	7.2×10 ⁻⁹	$4 \mu g/cm^2$	75	27	0.7

reaction	physics	current	precision	ref.	JUNA	Gamow	precision
		limit (keV)	(%)		limit (keV)	energy (keV)	(%)
$^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$	Massive star	890	60	[17]	380	220-380	test
$^{13}C(\alpha,n)^{16}O$	HI synthesis	279	60	[18]	200	140-230	20
$^{25}Mg(p,\gamma)^{26}Al$	Galaxy ²⁶ Al	92	20	[13]	58	50-300	15
${}^{19}{ m F}(p,\alpha){}^{16}{ m O}$	F abundance	189	80	[19]	100	50-350	10

Background	Fabrication	Installation	Experiment
2015	2016	2017	2018-2019

W. P. Liu, JUNA progress

Summary

- Nuclear astrophysics in good progress in China
- Direct measurement is a key data
- Underground JUNA is in progress, scheduled ground tuning 2016, and site turning 2017, hopefully start experiment in 2018
- Need to start CJPL-II JUNA lab construction, need formal confirmation of A1 space from management committee ASAP
- JUNA collaboration needed to tackle key experimental and technique challenges
- Welcome you to join JUNA!

Q&A: physics

- light curve and abundance curve
 - with time, half life and mass
 - with integral, abundance
- importance of ¹²C(a,g)¹⁶O reaction
 - how well do we know the rate: 60 %
 - the impact of higher precision: same with 3a, need for 10%, better for massive star
- importance of 19F(p,a) reaction
 - rule out the uncertainty of F abundance from NP
- importance of 25Mg(p,g)26AI reaction
 - see slides
- The JUNA-II plan
 - with MV machine and gas target and recoil meter see slides

Standard AGB models cannot explain the observed F-overabundance phenomenon. Nucleosynthesis model needs precise cross section data relevant to ¹⁹F production and destruction reactions.

-overabundance in AGB stars

Destruction: $1^{18}O(p, \gamma)^{19}F$ $1^{15}N(\alpha, \gamma)^{19}F$ $1^{4}C(\alpha, \gamma)^{18}O$

 Production:

 ${}^{19}F(p, \alpha){}^{16}O$
 ${}^{19}F(\alpha, p){}^{22}Ne$
 ${}^{19}F(p, \gamma){}^{20}Ne$
 ${}^{19}F(\alpha, \gamma){}^{23}Na$

JUNA-II 二期计划

4MV accelerator

Windowless target

RMS

Detectors

JUNA-II计划纳入国家重点基础研究锦屏实验室项目

JUNA

JUNA 时间表 time table

- 2014,项目得到NSFC批准
- •2015, 实验方案设计, 探测器建造
- •2016-2017, 加速器、离子源和探测器安装和调试

JUNA

- 2018, ²⁵Mg(p,γ)²⁶Al, ¹⁹F(p,a)¹⁶O实验测量, JUNAII 启动
- 2019, ¹³C(α,n)¹⁶O实验测量, ¹²C(α,γ)¹⁶O实验测量
- 2021, JUNAII 完成
- 2021-, ¹²C(α,γ)¹⁶O使用¹²C 束流…¹²C+¹²C, ¹²C+¹⁶O,

JUNA 的蓝图

He burning $^{12}C(\alpha, \gamma)^{16}O$ $^{16}O(\alpha, \gamma)^{20}Ne$ $^{20}Ne(\alpha, \gamma)^{24}Mg$

 $^{18}O(\alpha,\gamma)^{22}Ne$ $^{22}Ne(\alpha,\gamma)^{26}Mg$ $^{24}Mg(\alpha,\gamma)^{28}Si$

C, O burning

γ astronomy ²⁵Mg(p,γ)²⁶AI : g

H burning

³He(α, γ)⁷Be 2 H(α , γ)⁶Li ³He(³He,2p)⁴He $^{7}Be(p,\gamma)^{8}B$ $^{12}C(p, \gamma)^{13}N$ $^{14}N(p,\gamma)^{15}O$ $^{15}N(p,\gamma),(p,\alpha)^{16}O,^{12}C$ $^{17}O(p,\gamma),(p,\alpha)^{18}F,^{14}N$ $^{18}O(p,\gamma),(p,\alpha)^{19}F,^{15}N$ $^{19}F(p,\gamma),(p,\alpha)^{20}Ne,^{16}O$

n source ${}^{13}C(\alpha,n){}^{16}O$ ${}^{22}Ne(\alpha,n){}^{25}Mg$ ${}^{25}Mg(\alpha,n){}^{28}Si$ ${}^{26}Mg(\alpha,n){}^{29}Si$

JUNA-I

JUNA-II

OMEG 2015, June 24-27, Beijing, China

Q&A: technical

- JUNA targets for 10 emA
 - rotation, new material, like nano material
- background vs. depth
 - cosmic ray: yes
 - rock: no
 - accelerator and detector: no
- Energy and ion source of JUNA
 - see slides
- How more accuracy (cross sections) achieved compared with other experiments?
 - higher beam intensity: mA vs. 100 less uA
 - better detector: large BGO vs. HPGe
- Way to shield background
 - complex around target and detector and coincidence
- Detailed experimental setup
 - see slides
- Way of measuring cross section (with faraday cup)
 - No, FC can not give identification, with particle, gamma and neutron detectors

JUNA plan

ECR sourceAcceleration Magnet

Detectors

Beam	Intensity, mA	Energy,keV
H+	10	70-400
He+	10	70-400
He++	2	140-800

²⁵Mg progress

Q&A 3: MISC

- element made by earth?
 - Yes, by reactor and accelerator

More reference

 Lecture notes (nuclear astrophysics and physics of unstable physics.)