Underground Nuclear Astrophysics

Frank Strieder South Dakota School of Mines & Technology

The 2016 R-Matrix Workshop on Methods and Applications Santa Fe, New Mexico, USA June 28th, 2016

What is Matter made of?

A Legacy of Excellence

Solar system isotopic abundance

Nuclear reactions at astrophysical energies

nuclear reactions important to provide energy and the neutrons for nucleosynthesis

e.g. pp chain, ${}^{13}C + \alpha \rightarrow {}^{16}O + n$ or ${}^{22}Ne + \alpha \rightarrow {}^{25}Mg + n$

Main Source of Background

- natural radioactivity (from U and Th chains and from Rn)
- cosmic rays
- neutrons from (α,n) reactions and fission

Primary cosmit rays

Laboratori Nazionali del Gran Sasso Laboratory for Underground Nuclear Astrphysics

- 1400 m rock overburden (=4000 m w.e.)
- Flux attenuation: n 10⁻³ (CaCO₃)
μ 10⁻⁶ (1/m² h)

- underground area 18000 m²

- support facilities on the surface

Benefit of an Underground Laboratory in γ -ray spectroscopy

Benefit of an Underground Laboratory in γ-ray spectroscopy

Underground Accelerator: LUNA – The Beginning

1992: Installation of LUNA 50 kV accelerator @ LNGS

participating teams & institutions:

Ruhr-Universität Bochum

2 full time PhD students: Uwe Greife, Matthias Junker few part time PhD students + senior researcher

Laboratorio Nazionale del Gran Sasso

part time senior researcher: Cristina Arpesella later PhD student: Alessandra D'Alessandro

INFN Genova

part time senior researcher: Piero Corvisero, Paolo Prati

 \rightarrow 50 kV accelerator & gas target entirely built by students

LUNA I – Achievements Underground

Two reactions (solar pp chain) already studied at Gamow energies:

R. Bonetti et al.: Phys. Rev. Lett. 82 (1999) 5205

C. Casella et al.: Nucl. Phys. A706 (2002) 203

Definition of astrophysical S factor S(E)

$$\sigma(E) = \frac{S(E)}{E} \exp(-2\pi \eta)$$

LUNA II – 400 kV Accelerator (2000 – 2018(?))

 $U_{terminal} = 50 - 400 kV$ $I_{max} = 500 \mu A \text{ (on target)}$ $\Delta E = 0.07 keV$ Allowed beams: H⁺, ⁴He, (³He)

LUNA II – 400 kV Accelerator (2000 – 2018(?))

courtesy A. Formicola

LUNA II – 400 kV Accelerator (2000 – 2018(?))

LUNA II – Key Studies

³He(α,γ)⁷Be – best example for combination of high and low energy data

now: very good R-Matrix fit over large energy region, but differences to models

LUNA II – ¹⁴N(p, γ)¹⁵O CNO bottleneck reaction

Compact **A**ccelerator **S**ystem for **P**erforming **A**strophysical **R**esearch

SOUTH DAKOTA

Frank Strieder (PI) Doug Wells Tyler Borgwardt Mark Hanhardt Thomas Kadlecek Joe VanDriel John Harrison Lucas Lindholm

Dan Robertson (TC) Manoel Couder Michael Wiescher Rory Hamilton Zach Meisel Bryant Vande Kolk

Uwe Greife

Sanford Underground Research Facility

SURF 4850 L Ross Campus

How were Elements from Iron to Uranium made?

from: National Academy of Science Report, 2002

CASPAR Concept

1 MV electrostatic accelerator: (HVEC JN Model, 10 yrs at Notre Dame) Belt driven charging system Single stage acceleration of positive ions Particle intensity ~ 150µA

Windowless extended gas target Roots blowers oil free pumps & turbomolecular pumps High efficiency neutron detector of ³He tubes

October 6th, 2015

Photo by Matt Kapust (SURF)

Photo by Matt Kapust (SURF)

Neutron Background Reduction

Future Underground Nuclear Astrophysics

Status of the LUNA - MV project at LNGS

Accelerator:

Intense H⁺, 4 He⁺, 12 C⁺ e 12 C⁺⁺ beams in the energy range: 350 keV-3.5 MeV. One beam line with all necessary elements (magnets, pumps, valves,...).

Total budget about 3.9 Meuro: from LUNA MV Premium projects (total 5.3 Meuro)

Tendering procedure: full documentation submitted to INFN central administration at end of february 2015.

Accelerator installed and tested at LNGS by 07/2018. Then first experiments

LUNA-MV Physics - ${}^{12}C(\alpha,\gamma){}^{16}O$ more than 40 years

for "his theoretical and experimental studies of the nuclear reactions of importance in the formation of the chemical elements in the universe".

(shared with S. Chandrasekhar)

Direct Methods – γ -ray Experiments

Direct Methods – γ -ray Experiments

 E_{γ} [MeV]

M. Fey, Stuttgart, Ph.D. thesis

¹²C(α , γ)¹⁶O – Aims LUNA-MV/ERNA

¹²C(α , γ)¹⁶O – Experimental Issues

- ¹²C target preparation at SIDONI (France) contact established preliminary studies in progress
- target characterization at LNL test studies in progress

higher separation power

high homogeneity

GEANT4 simulation of γ -ray array example: GASP 4π BGO array

CJPL underground laboratory

JUNA

JUNA-I plan

JUNA-I

Beam	Intensity (mA)	Energy,keV	
H ⁺	10	70-400	
He ⁺	10	70-400	
He ⁺⁺	2-5	140-800	

courtesy Weiping Liu

CJPL-II progress

courtesy Weiping Liu

Underground accelerator project DIANA for low energy studies

p, α, HI beams 100 x CASPAR luminosity

High luminosity, low background experiments