

NGC3982

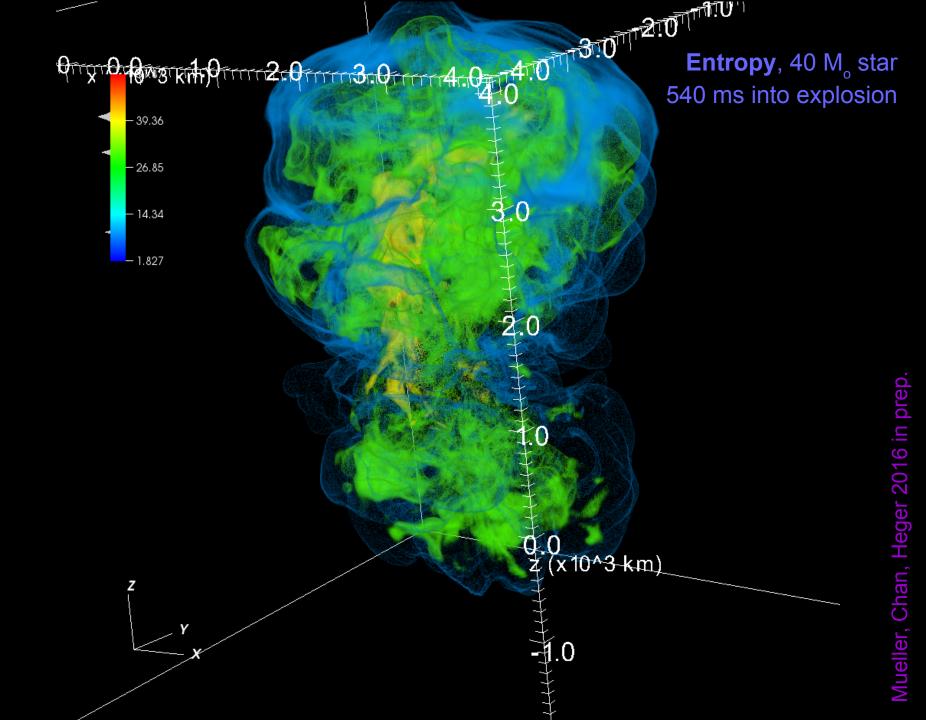
SJTU, Nuclear Astrophysics Winter School 2016, Shanghai, China, December 13, 2012

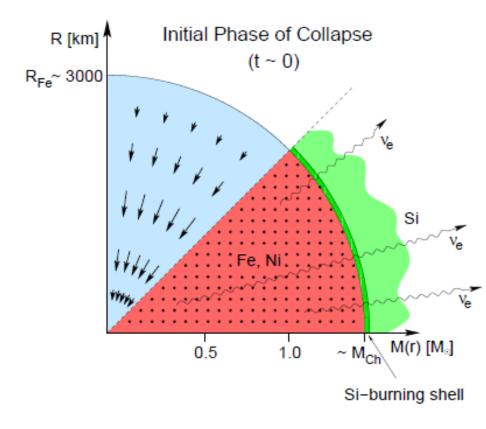
Origin of the Elements: Supernovae from Massive Stars and their Nucleosynthesis

Alexander Heger

Overview

Núcleosynthesis in Supernova


Varieties of Stellar Deaths

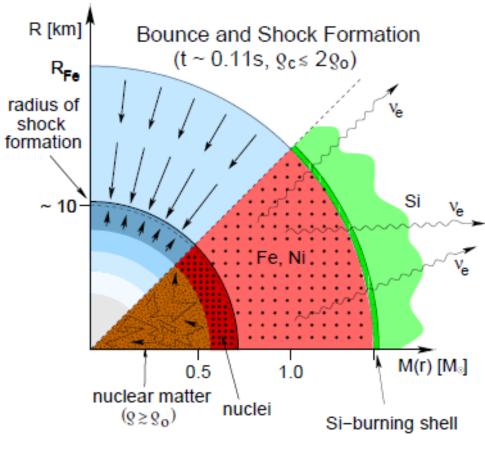

A First Look Core Collapse Supernovae (Massive Stars, Pop I)

Iron Core Collapse

• Iron core supported by degeneracy pressure of relativistic electrons: $P = K (\rho Y_e)^{4/3}$ Y_e : electrons per nucleon

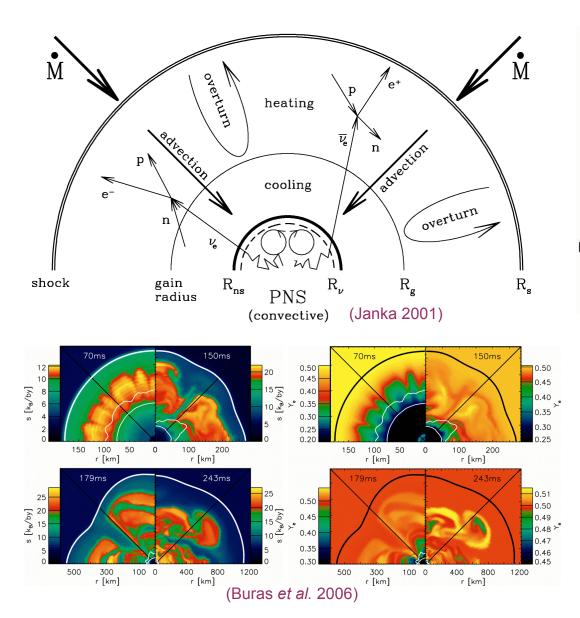
- Polytrope! \rightarrow Lecture 5
- Maximum mass:

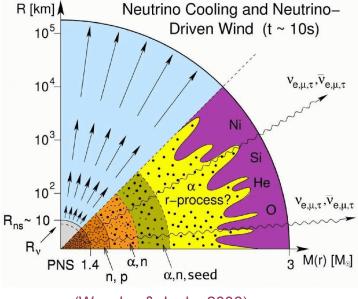
 $M_{Ch} \approx 5.84 M_{\odot} Y_e^2$


• Core must contract, density and temperature go up, then:

$$e^{-} + \underbrace{A}_{nucleus} \rightarrow A' + v_{e}$$

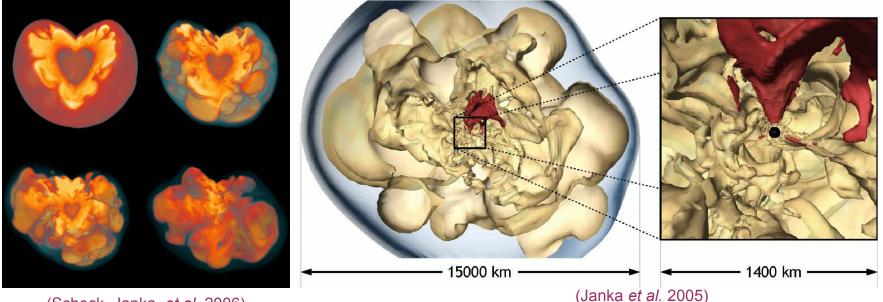
 $\gamma + A \to x \, \alpha \to y \, n + z \, p$


Pressure drain \rightarrow collapse!


From Collapse to Explosion

- Nuclear forces become repulsive above ~1.7×10¹⁴g/cm³.
- Collapse of inner core is stopped → neutron star born.
- Rebounding neutron star crashes into outer shells, launches shock wave.
- Does the shock wave expel the envelope?
- No. Shock dies. Other mechanism have to do!

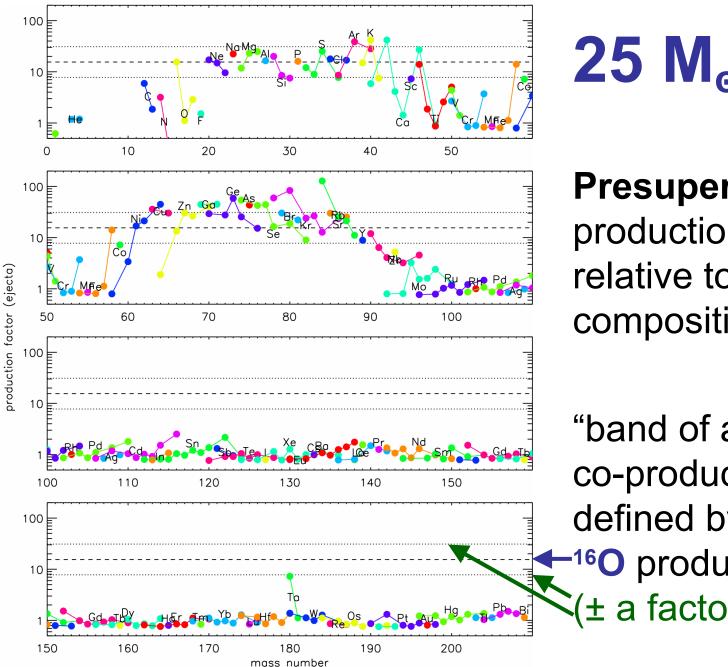
Core Collapse Supernovae



(Woosley & Janka 2006)

←Entropy and electron per baryon (Y_e) at different time snapshots in a core collapse supernova (simulation: equatorial band)

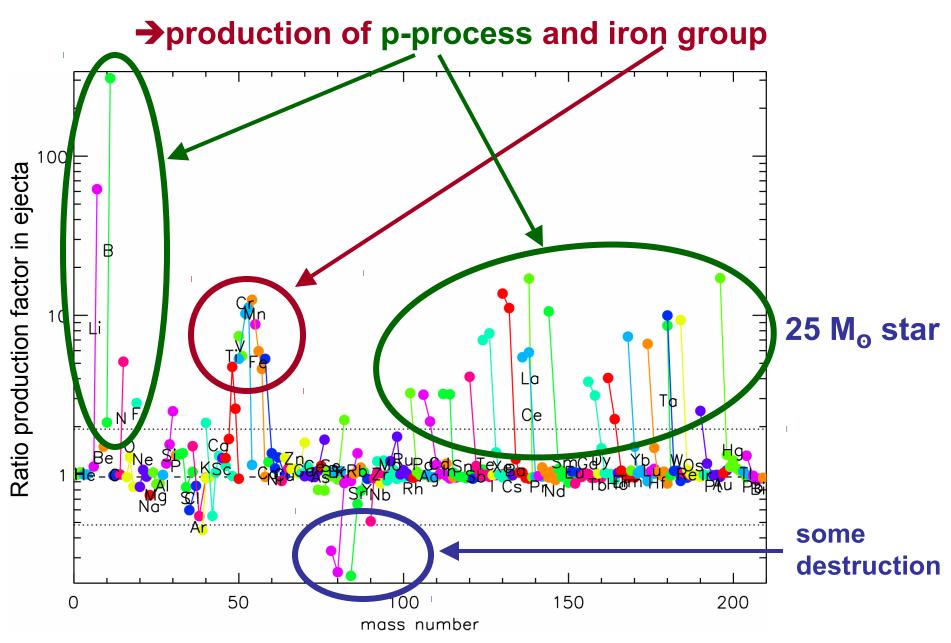
Core Collapse Supernovae – 3D

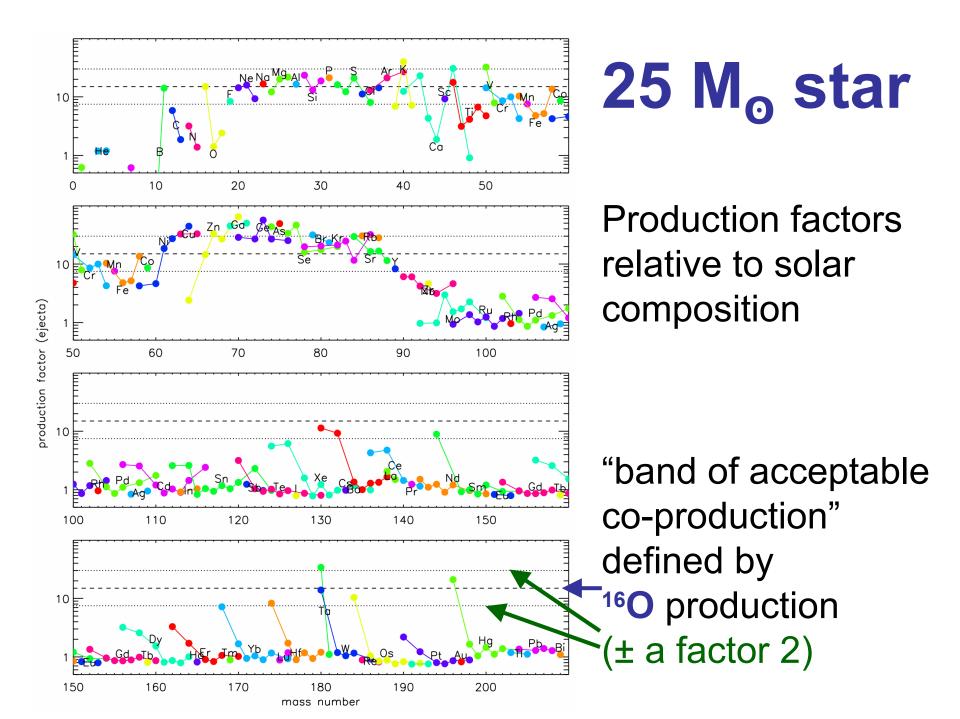

Cold inflow and hot outflow in 3D simulations → similar to dipolar flow pattern observed in 2D rotationally symmetric simulations

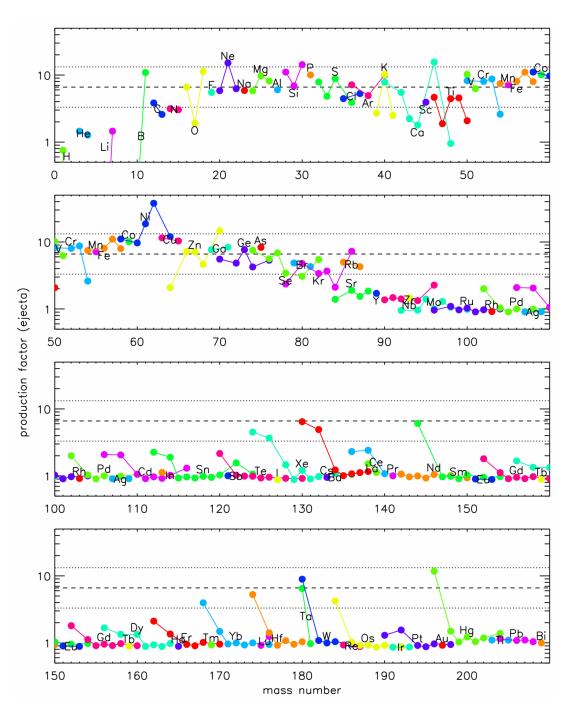
(Scheck, Janka, et al. 2006)

A First Look Supernovae & Nucleosynthesis (Massive Stars, Pop I)

25 M_o star

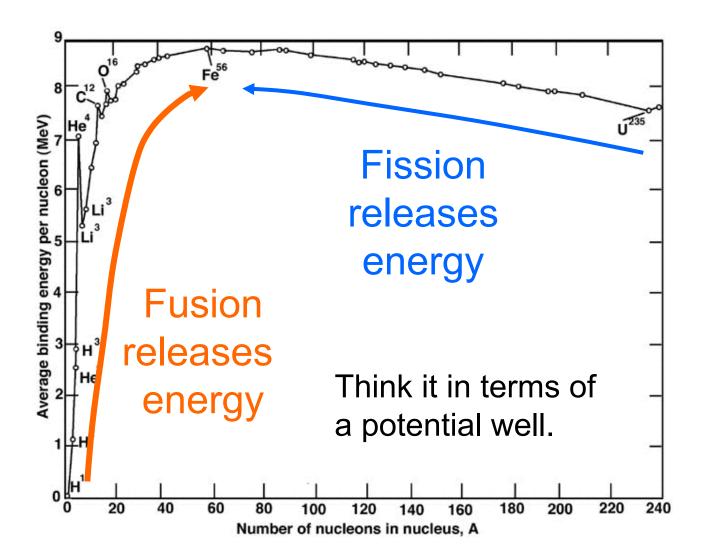

Presupernova production factors relative to solar composition


"band of acceptable co-production" defined by ¹⁶O production (± a factor 2)


Explosive Nucleosynthesis

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process <i>vp</i> -process	-	>10?	1	(n,γ), β ⁻
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
Ο	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, AI, P	2 - 3	5	(γ,α)
		<i>p</i> -process ¹¹ B, ¹⁹ F, ¹³⁸ La, ¹⁸⁰ Ta	2 - 3	5	(ɣ,n)
		<i>v</i> -process		5	(ν, ν'), (ν, e -)

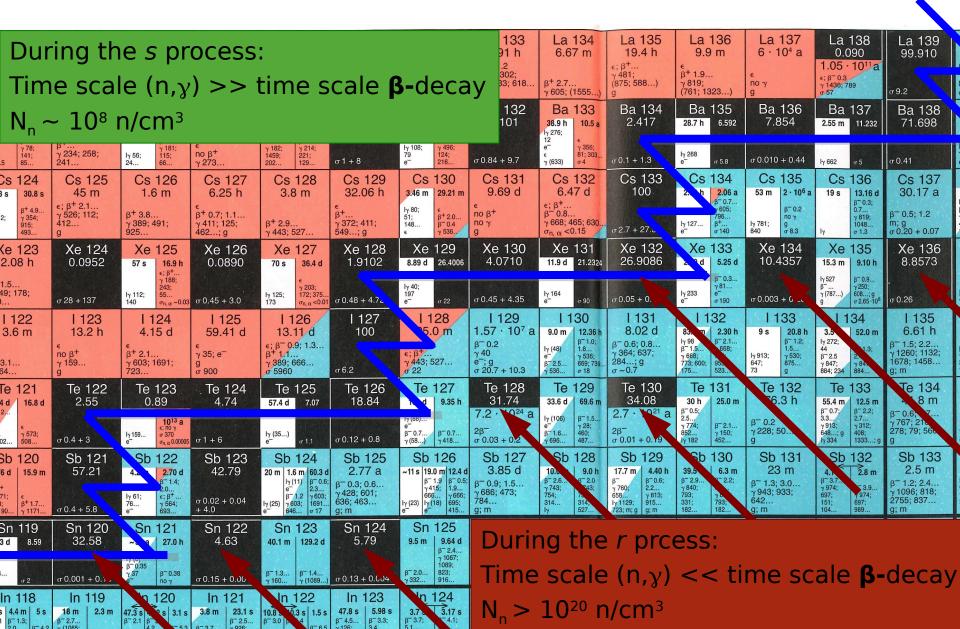
Explosive Nucleosynthesis contribution



15 M_o star

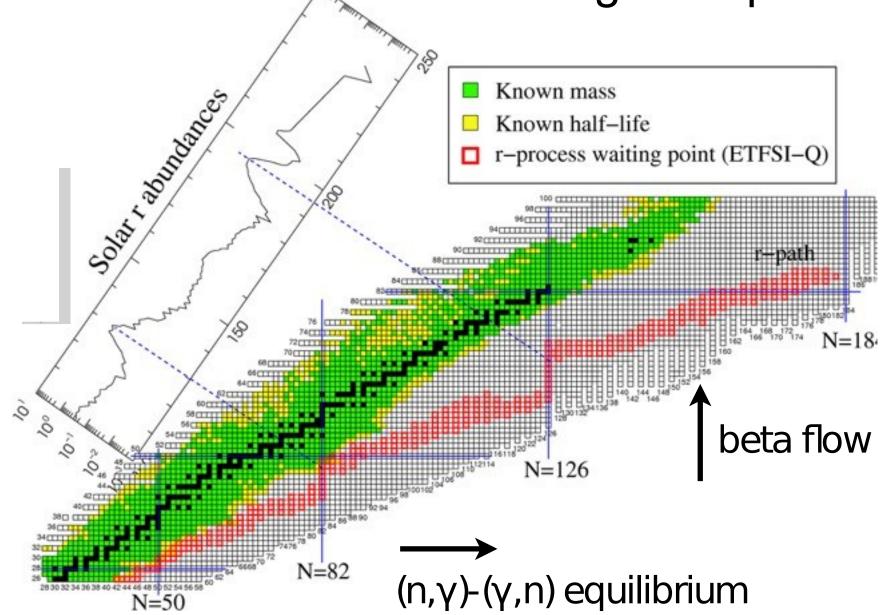
Production factors relative to solar composition

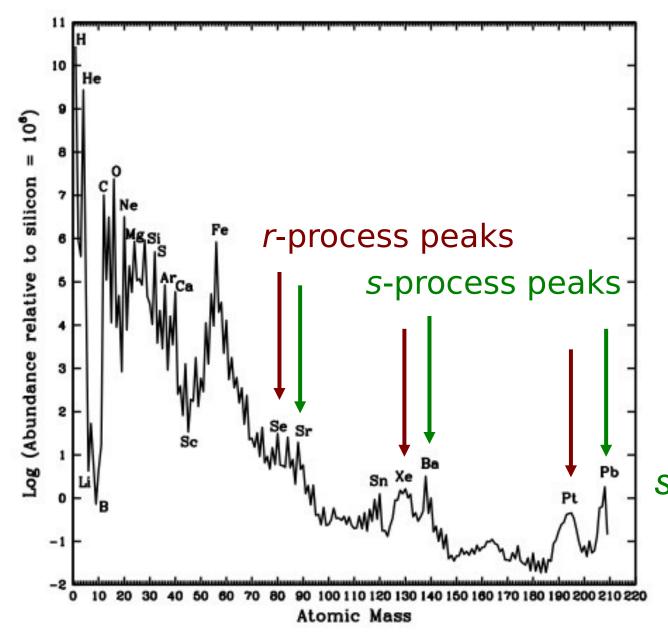
"band of acceptable co-production" defined by ¹⁶O production (± a factor 2)


Binding Energy Curve

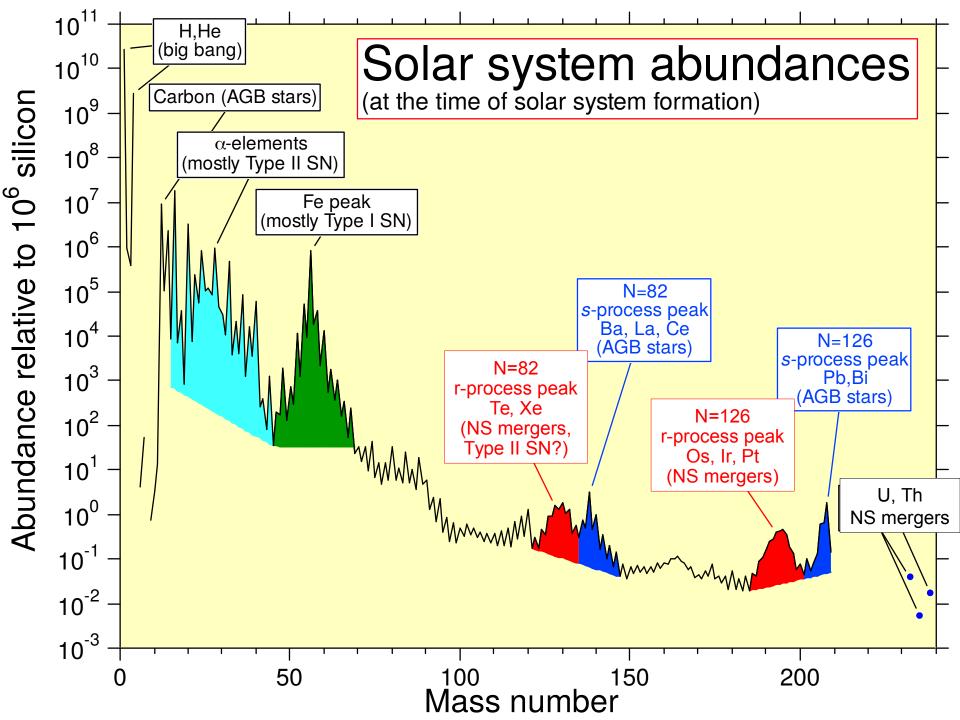
Beyond Fe

- Need to add energy to do fusion
- Nuclear reactions do not contribute anymore to the energy of a star
- High coulomb barrier prevents proton or alpha captures, because they are charged
- Have to add neutrons to make heavier elements!


Slow and **Rapid** neutron captures


r-only s-only p-only

a 126 ^{0 s 54 s}	La 127 5.1 m 3.8 m	La 128 <1.4 m 5.18 m	La 129 11.6 m ^{B⁺} 2.4: 2.7	La 130 8.7 m	La 131 59 m	La 132 24.3 m 4.8 h ^{β+3.2;}	La 133 3.91 h ε; β ⁺ 1.2	La 134 6.67 m	La 135 19.4 h ε; β ⁺	La 136 9.9 m	La 137 6 · 10⁴ a	La 138 0.090 1.05 · 10 ¹¹ a	La 139 99.910
β ⁺ γ 256; 455	$\beta^{+}_{\ \gamma 56;}_{\ 25}$	β ⁺ β ⁺ γ 284; γ 284; 659 679	γ 279; 111; 254; 457 g	β ⁺ γ 357; 551; 544; 908	β ⁺ 1.4; 1.9 γ 108; 418; 365; 286; g	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ 279; 302; 290; 633; 618 g	β ⁺ 2.7 γ 605; (1555)	γ 481; (875; 588) g	β^+ 1.9 γ 819; (761; 1323)	ε no γ g	ε; β ⁻ 0.3 γ 1436; 789 σ 57	σ 9.2
Ba 125 m 3.5 m	Ba 126 100 m	Ba 127 1.9 s 12.7 m	Ba 128 2.43 d	Ba 129 2.13 h 2.20 h	Ba 130 0.106	Ba 131	Ba 132 0.101	Ba 133 38.9 h 10.5 a 1 ₂ 276;	Ba 134 2.417	Ba 135 28.7 h 6.592	Ba 136 7.854	Ba 137 2.55 m 11.232	Ba 138 71.698
β ⁺ 3.4 γ 78; 141; .5 85	β ⁺ γ 234; 258; 241	β ⁺ 2.4 γ 181; 1γ 56; 115; 24 66	ε no β+ γ 273	$\begin{array}{ccc} \varepsilon & \beta^{+} \ 1.4 \\ \gamma \ 182; & \gamma \ 214; \\ 1459; & 221; \\ 202 & 129 \end{array}$	g 1 + 8	β+ γ 108; γ 496; 79 124; e ⁻ 216	ot 0 84 + 9 7	12 ε ε γ 356; ε 81; 303 γ (633) σ 4	σ 0.1 + 1.3	lγ 268 e σ 5.8	σ 0.010 + 0.44	lγ 662 σ 5	σ 0.41
Cs 124 s 30.8 s	Cs 125 45 m	Cs 126 1.6 m	Cs 127 6.25 h	Cs 128 3.8 m	Cs 129 32.06 h	Cs 130 3.46 m 29.21 m	Cs 131 9.69 d	Cs 132 6.47 d	Cs 133 100	Cs 134 2. h 2.06 a	Cs 135 53 m 2 · 10 ⁶ a	Cs 136	Cs 137 30.17 a
$\begin{array}{ccc} & \beta^{+} \ 4.9 \\ \gamma \ 354; \\ 915; \\ 493 \end{array}$	ε; β ⁺ 2.1 γ 526; 112; 412 g	β ⁺ 3.8 γ 389; 491; 925	ε β ⁺ 0.7; 1.1 γ 411; 125; 462; q	β ⁺ 2.9 γ 443; 527	ε β ⁺ γ 372; 411; 549; g	$\begin{array}{ccc} I_{\gamma} 80; & \epsilon \\ 51; & \beta^+ 2.0 \\ 148 & \beta^- 0.4 \\ \epsilon & \gamma 536 \end{array}$	ε no β ⁺ no γ g	ε; β ⁺ β ⁻ 0.8 γ 668; 465; 630 σ _{n, α} <0.15	σ 2.7 + 27.×	β ⁻ 0.7 γ 605; ⁷⁹⁶ ε ⁻ σ140	β ⁻ 0.2 no γ 840 σ 8.3	β ⁻ 0.3; 0.7 γ 819; 1048 Ιγ σ 1.3	β 0.5; 1.2 m; g σ 0.20 + 0.07
(e 123 2.08 h	Xe 124 0.0952	Xe 125	Xe 126 0.0890	Xe 127 70 s 36.4 d	Xe 128 1.9102	Xe 129 8.89 d 26.4006	Xe 130 4.0710	Xe 131	Xe 132 26.9086	Xe 133 2 1 d 5.25 d	Xe 134 10.4357	Xe 135	Xe 136 8.8573
1.5 49; 178; 	r 28 + 137	ε; β ⁺ γ 188; 243; 55 140 σ _{n, α} ~0.ι	σ 0 45 + 3 0	¢ γ 203; 172; 375 σ _{n, α} <0.01	⊤ 0.48 + 4.7∠	γ 40; 197 e [—] σ 22	σ 0.45 + 4.35	lγ 164 e¯ σ 90	σ 0.05 + 0.	β ⁻ 0.3 γ81 e ⁻ e ⁻ σ190	σ 0.003 + 6 ₋ .	$\begin{array}{c} I_{\gamma} 527 & \beta^- 0.9 \dots \\ \beta^- \dots & \gamma 250; \\ \gamma (787 \dots) & 608 \dots; g \\ g & \sigma 2.65 \cdot 10^6 \end{array}$	σ 0.26
l 122 3.6 m	l 123 13.2 h	l 124 4.15 d	l 125 59.41 d	l 126 13.11 d	l 127 100	l 128 75.0 m	l 129 1.57 · 10 ⁷ a		l 131 8.02 d	I 132 83. m 2.30 h	I 133 9 s 20.8 h	1 134 3.5 52.0 m	l 135 6.61 h
3.1 64	ε no β ⁺ γ 159 g	ε β ⁺ 2.1 γ 603; 1691; 723	¢ γ 35; e g σ 900	 ε; β⁻ 0.9; 1.3 β⁺ 1.1 γ 389; 666 σ 5960 	σ 6.2	ε ; β [†] γ 443; 527 σ 22	β ⁻ 0.2 γ 40 e ⁻ ; g σ 20.7 + 10.3	$\begin{array}{c} \beta^{-} 1.0;\\ l\gamma (48) & 1.8\\ e^{-} & \gamma 536;\\ \beta^{-} 2.5 & 669; 739\\ \gamma 536 & \sigma 18 \end{array}$	$\begin{array}{c} \beta^{-} \ 0.6; \ 0.8\\ \gamma \ 364; \ 637;\\ 284; \ g\\ \sigma \sim 0.7 \end{array}$	$\begin{array}{cccc} & & & & & & & & & & & & \\ \beta^{-} & 1.5 & & & & & & & & \\ \beta^{-} & 1.5 & & & & & & & & \\ \gamma & 668; & & & & & & & & \\ 773; & 600; & & & & & & & & \\ 773; & 600; & & & & & & & & \\ 175 & & & & & & & & & \\ 523 & & & & & & & \\ \end{array}$	β ⁻ 1.2; 1.5 Ιγ 913; γ 530; 647; 875 73 g	$\begin{matrix} I\gamma \ 272; \\ 44 \\ \beta^{-} \ 2.5 \\ \gamma \ 847; \\ 884; \ 234 \end{matrix} = \begin{matrix} 1.3; \\ 2.4 \\ 884 \end{matrix}$	$\begin{array}{c} \beta^{-} \ 1.5; \ 2.2\\ \gamma \ 1260; \ 1132;\\ 1678; \ 1458\\ g; \ m \end{array}$
Te 121 4 d 16.8 d	Te 122 2.55	Te 123 0.89	Te 124 4.74	Te 125 57.4 d 7.07	Te 126 18.84	Te 127	Te 128 31.74	Te 129 33.6 d 69.6 m	Te 130 34.08	Te 131 30 h 25.0 m	Te 132 76.3 h	Te 133 55.4 m 12.5 m β ⁻ 0.7; β ⁻ 2.2;	Te 134 4 8 m
2, ε γ 573; 02 508	704+3	10¹³ a ε; no γ σ 370 σ ₀ φ 0.0000 ^p	v 1 + 6	γ (35) e	σ 0.12 + 0.8	Iγ (88) e ⁻ β ⁻ 0.7 γ (58) γ 418	7.2 10^{24} a $2\beta^{-}$	Ιγ (106) β 1.5 e ⁻ γ 28; β 1.6 460; γ 696 487	$2.7 \cdot 1^{-21} a$	3 0.5; 2.5 γ774; β 2.1 352 γ 150; γ 182 452	$\beta^{-} 0.2$ $\gamma 228; 50$ g	β ⁻ 0.7; β ⁻ 2.2; 3.3 2.7 γ 913; γ 312; 648; g 408; 1333;	
Sb 120 6 d 15.9 m	Sb 121 57.21	Sb 122 4.2 2.70 d	Sb 123 42.79	Sb 124	Sb 125 2.77 a	Sb 126 ~11 s 19.0 m 12.4 d	Sb 127 3.85 d	Sb 128	Sb 129 17.7 m 4.40 h	Sb 130 39.5 m 1 6.3 m	Sb 131 23 m	Sb 132 4.1 2.8 m	Sb 133 2.5 m
+ 71; ε 8; β ⁺ 1.7 90 γ 1171	σ 0.4 + 5.8	β ⁻ 1.4; 2.0 2.0 lγ 61; ε; β ⁺ 76 γ 564; e ⁻ 693	σ 0.02 + 0.04 - 4.0	$ \begin{array}{c} \gamma(11) \\ e^- & 2.3 \\ \beta^- 1.2 \\ \gamma 603; \\ 1691 \\ e^- \\ 646 \\ \sigma & 17 \end{array} $	β^{-} 0.3; 0.6 γ 428; 601; 636; 463 g; m	$ \begin{array}{c c} & \beta^{-} 1.9 & \beta^{-} 0.5; \\ \gamma 415; & 1.9 \\ 666 & \gamma 666; \\ i\gamma (123) & i\gamma (18) & 695; \\ e^{-} & 415 \end{array} $		$\begin{array}{ccccccc} \beta^{-} 2.6., & \beta^{-} 2.0 \\ \gamma 743; & 743; \\ 754; & 314 \\ 314 & 314 \\ 1\gamma & 527 \end{array}$	β ⁻ β ⁻ 0.6; γ 760; 2.2 658 γ 813; Iy 1129; 915 723; m; g g; m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β 1.3; 3.0 γ 943; 933; 642 q; m	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β 1.2; 2.4 γ 1096; 818; 2755; 837 g; m
Sn 119 3 d 8.59	Sn 120 32.58	Sn 121	Sn 122 4.63	Sn 123 40.1 m 129.2 d	Sn 124 5.79	Sn 125 9.5 m 9.64 d	Sn 126 2.345 · 10⁵ a	Sn 127 4.1 m 2.1 h	Sn 128 6.5 59.1 m	Sn 129 6.9 m 2.2 m	En 130 1.7 m 13.7 m	Sn 131 50 s 39 s	Sn 132 39.7 s
 σ 2	σ 0.001 + 0.13	β ⁻ 0.35 γ 37 β ⁻ 0.38 e ⁻ ηο γ	0.15 ± 0.001	β 1.3 γ 160 γ (1089)	σ 0.13 + 0.004	$\begin{array}{c} \beta^{-} 2.4\\ \gamma \ 1067;\\ 1089;\\ 823;\\ \gamma \ 332\\ 916\end{array}$	β 0.3 γ 88; 64; 87 m	β 3.2 γ 1114; β 2.7 1096; γ 491 823	8 ⁻ 0.7 182; 75; 3 1γ 832; 681. 1169 m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β ⁻ ~4 1.1; γ 145; 1. 899; γ 19. 84; 780; 311; m 70; g	β 3.4 γ 1226; 450; 305; β 3.9 1229 γ 798	β 1.8 γ 341; 86; 899; 247; 993 g
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	In 119 18 m 2.3 m β ⁻ 2.7 μ (1065;	$ \ln 120 47.3 s 46.2 s 3.1 s \beta^{-2.1} \beta^{-2.2;} \beta^{-2.2;} \beta^{-5.3} $	In 121 3.8 m 23.1 s β ⁻ 2.5 x 9 ⁻ 2.5	In 122 10.8 s 10.3 s β ^{-3.0} β ^{-4.4} β ^{-6.5}	In 123 47.8 s 5.98 s β ⁻ 4.5 β ⁻ 3.3; 126; 34	3.73 3.17 s β ^{-3.7} ; ^{-4.1} ; 51.	In 125 12.2 s 2.3 s β ^{-4.1;} 4.3	In 126 1.64 s 1.60 s 6 ^{-4.5} 6 ^{-4.9} :	In 127 1.04s 3.67s 1.09s β ^{-4.8;} β ^{-7.0} β ^{-5.0}	0.72 0.84 s β ^{-5.3;} β ^{-5.5;} 6.8 7.6	In 129 0.67s 1.23s 0.61s β ^{-5.4;} β ^{-5.7} .7.6 β ^{-8.1} 7.0	0.53 s β ⁻ γ2259 γ1221; γ1905	$\begin{array}{c c} & \text{In 131} \\ \hline 0.32 s & 0.35 s \\ \beta^- 6.6; & \beta^- 9.2 \\ 8.8. \end{array} \begin{array}{c} 0.28 s \\ \beta^- 6.8 \end{array}$


Unstable magic nuclei act as "waiting points" during the *r*-process

The Solar System abundances

The *r*-process peaks correspond to unstable nuclei with N=50,82,126 The s-process peaks correspond to stable nuclei with **Neutron Magic Numbers** N=50,82,126

