The 2016 R-Matrix Workshop on Methods and Applications

Experimental application of the generalized R-matrix approach: ${}^{19}F(\rho,\alpha){}^{16}O$ and ${}^{13}C(\alpha,n){}^{16}O$

Marco La Cognata

residenza del Consiglio dei Ministri

Ministero dell'Istruzione dell'Università e della Ricerca

How to measure the A+x \rightarrow c+C reaction in a *direct* way?

It looks *quite* simple!

The electron screening effect.

Thanks to recent experimental developments, measurements have been extended to the energies of interest for several reactions.

This lead to the discovery of electron screening: a such low energies atomic degrees of freedom cannot be neglected.

Pictorial view:

Experimentally:

The electron cloud shields the nuclear charge thus the projectile meets a reduced Coulomb barrier \rightarrow enhancement of the reaction probability as tunneling is more likely.

Bracci et al., NPA 513 (1990) 316

Rolfs & Rodney, Cauldrons in the Cosmos (Univ. Chicago Press) 1988 Strieder et al., Naturwissenschaften 88 (2001) 461

 $\sigma_{\rm s}(E)/\sigma_{\rm b}(E) \propto \exp(\pi \eta U_{\rm e}/E),$

Direct vs. indirect measurements

Indirect measurements:

Complicated but rewarding

- ✓ High energy experiments: up to several hundreds MeV
 - \rightarrow no Coulomb barrier suppression
 - \rightarrow negligible straggling
 - \rightarrow no electron screening

Indirect measurements are the only ones allowing you to measure down to astrophysical energies with the present day facilities

Nuclear reaction theory required

- ightarrow cross checks of the methods needed
- \rightarrow possible spurious contribution
- \rightarrow additional systematic errors (is the result model independent?)

... Indirect techniques are complementary to direct measurements Examples: Coulomb dissociation, ANC and Trojan horse method

Indirect Techniques: a cartoon

Only one reaction mechanism has to be selected, for which the reaction theory we have developed applies. A careful experimental & theoretical investigation is necessary

To recall the previous sketch:

R. Tribble et al., Rep. Prog. Phys. **77** (2014) 106901

Nuclear reaction theory

Indirect techniques: a comparison

In the **Coulomb dissociation**, a virtual photon beam is used to a photodisintegration reaction; the detailed balance principle is then used to recover the cross section of the relevant radiative capture reaction

a s A F

In the Asymptotic Normalization Coefficient (ANC) approach, a transfer reaction to a bound state is measured to deduce the normalization constant of the bound state wave function, prop. to the $A(x,\gamma)F$ c.s.

In the **Trojan Horse Method**, a transfer reaction to an unbound system is used to measure the c.s. of the A(x,c)C process. C and c can be charged or neutral particles (no photons)

The Trojan Horse Method: what you already know

Coulomb barrier → exponential suppression of the cross section at astrophysical energies + electron screening

 \rightarrow low-energy, bare-nucleus cross section is experimentally available only through <u>extrapolation</u> <u>OR indirect measurements</u>

Additional advantages:

- reduced systematic errors due to straggling, background...
- magnifying glass effect

<u>But...</u>

- off-shell cross section deduced (x \rightarrow virtual particle)
- no absolute units

From A+a(x \oplus s) \rightarrow b+B+s @ 10-60 MeV A + x \rightarrow b + B @ 5-20 keV By selecting the QF contribution

Baur PLB 178 (1986) 135 Spitaleri, in *Problems of Fundamental Modern Physics II*, World Sci. (1991) 21 Spitaleri et al., PAN 74 (2011) 1763 Typel & Baur, Ann. Phys. 305 (2003) 228 Mukhamedzhanov et al., JPG 35 (2008) 014016

THM: Basic features

Plane Wave Impulse Approximation:

- beam energy >> a = x ⊕ b breakup Q-value
- projectile wavelength k⁻¹ << x b intercluster distance
 - + plane waves in the entrance and exit channel

→ the 3-body cross section factorizes:

- KF kinematic factor
- $\phi(p_b)^2$ spectator momentum distribution
- dσ^{off}/dΩ off-shell cross section or "nuclear" (N) cross section

 $d\sigma^{off}/d\Omega \rightarrow d\sigma/d\Omega$ (on shell)

The penetration factor P_1 has to be introduced:

$$\frac{d\sigma}{d\Omega} = \sum_{l} P_l \frac{d\sigma_l^N}{d\Omega}$$

The full THM: the resonant case (A. Mukhamedzhanov)

Some considerations on the non resonant case

- Surface integral formalism: TH reaction amplitude is expressed in terms of the OES level matrix elements for the binary sub-reaction. The surface term contains the logarithmic derivative of the outgoing spherical wave resembling the R-matrix method.
- The inverse penetration factors compensate for the steep decrease of the cross section due to the presence of the partial widths
- HOES effects can be accounted for and are negligible in most of the cases (zero for neutrons! Pure pole mechanism, otherwise branching point singularity)
- No need of normalization to direct data: we can calculate the normalization constants (however, less model dependence is found in the case normalization to direct data is performed)
- The KF x $\varphi^2(p_s)$ x d $\sigma/d\Omega$ structure of the triple differential cross section is fully justified
- PWA makes calculations easier, though DWBA or CDCC can be used as well
- QF mechanism has to enforced, otherwise not a single term is present and the dependence of S-matrix is not straightforward

Resonant THM eqs. at work

Example of two interfering resonances: a simplified version of the theory

The TH triple differential cross section takes the form:

in a strict approach the triple differential cross section is expressed in terms of the overlap function I_{sx}^a rather then the two-body bound state wave function ϕ_a . Note that I_{sx}^a and ϕ_a are related by

$$M_{\tau}^{0}(\mathbf{k}_{sF}, \mathbf{k}_{aA}) = \left[W_{Ax}^{F_{\tau}} \left(\mathbf{k}_{A} - \frac{m_{A}}{m_{F}} \mathbf{k}_{F} \right) \right]^{*} \times I_{sx}^{a} \left(\mathbf{k}_{s} - \frac{m_{s}}{m_{a}} \mathbf{k}_{a} \right).$$

 $I^{a}_{sx}(\mathbf{p}_{sx})$ is the Fourier transform of the overlap function $I^{a}_{sx}(\mathbf{r}_{sx})$ W^{F}_{sx} is the vertex form factor for A + x \rightarrow F_t:

$$W_{Ax}^{F_{\tau}}(\mathbf{k}_{Ax}) = \\ \langle e^{i\mathbf{k}_{Ax}\cdot\mathbf{r}_{Ax}} | \langle V_{xA} \rangle_{Ax}(\mathbf{r}_{Ax}) | I_{Ax}^{F_{\tau}}(\mathbf{r}_{Ax}) \rangle$$

the vertex form factor W_{sx}^{F} contains tha ANC for the A + x \rightarrow F_t system as it contains the overlap function I_{Ax}^{F}

$$I_{sx}^{a} = S_{sx}^{1/2} \varphi_{a}$$
 S —> spectroscopic factor

THM vs. OES astrophysical factor

Direct data:

THM data:

.. ..

$$S(E_{xA}) = \frac{\mu_{cC} \,\mu_{xA}}{4 \,\pi^2} \, \frac{k_{cC}}{k_{xA}} \, \frac{1}{\hat{J}_x \,\hat{J}_A} E_{xA} \, e^{2 \pi \,\eta_{xA}} \\ \times \left| \sum_{\nu,\tau=1}^2 \, \tilde{V}_{\nu \, cC}(E_{cC}) \, [\mathbf{D}^{-1}]_{\nu\tau} \, \tilde{V}_{\tau \, xA}(E_{xA}) \right|^2$$

Remember that:

$$\tilde{\Gamma}_{\nu c}(E_c) = 2\pi |\tilde{V}_{\nu c}(E_c)|^2$$

is the formal partial resonance width for the decay of this level into channel c=x+A or c=b+B.

$$S^{\text{TH}}(E_{xA}) = \frac{\mu_{cC} \mu_{sF} \mu_{aA}}{2\pi^5} \frac{\kappa_{cC} \kappa_{sF}}{k_{aA}} \frac{1}{\hat{J}_a \hat{J}_A} E_{xA} e^{2\pi \eta_{xA}}$$
$$\times \Gamma_{2xA}(E_{xA}) \left| \sum_{\nu,\tau=1}^2 \tilde{V}_{\nu cC}(E_{cC}) [\mathbf{D}^{-1}]_{\nu\tau} L_{2\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA}) \right|^2$$

L L 1

Where:

$$L_{2\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA}) = \frac{M_{\tau}(\mathbf{k}_{sF}, \mathbf{k}_{aA})}{M_{2}(\mathbf{k}_{sF}, \mathbf{k}_{aA})}$$

It can be calculated (DWBA, CDCC, PWBA...) or taken from measurements

The matrix \mathbf{D}^{-1} and $V_{vcc}(E_{cc})$ are the same in the TH and OES astrophysical factors. The THM S-factor does not contain the penetration factor, which has to be inserted for comparison with direct data

Moreover: exploring negative energies with the THM

$$E_{Ax} = \frac{m_x}{m_x + m_A} E_A - \frac{p_s^2}{2\mu_{sF}} + \frac{\mathbf{p}_s \cdot \mathbf{p}_A}{m_x + m_A} - \varepsilon_{sx}$$
s-x Fermi motion

s-x binding energy

It is possible to achieve negative energies in the A-x channel

How to deal with negative energies? what is their meaning?

Standard R-Matrix approach cannot be applied to extract the resonance parameters of the A(x,c)C reaction because x is virtual —> Modified R-Matrix is introduced instead (A. Mukhamedzhanov 2010)

$$\frac{d^2\sigma}{dE_{Cc}\,d\Omega_s} \propto \frac{\Gamma_{(Cc)_i}(E)\,|M_i(E)|^2}{(E-E_{R_i})^2 + \Gamma_i^2(E)/4}$$

At negative energies M² is given by the product of the Whittaker function and the ANC of the F state populated in the transfer reaction

Merging together ANC and THM —> deep connection of these two indirect methods

¹⁹F(p,α₀)¹⁶O

s-nuclei are produced and brought to the surface thanks to mixing phenomena, together with fluorine that is produced in the same region from the same n-source.

¹⁹F is a key isotope as it can be used to probe AGB star mixing phenomena and nucleosynthesis. But its production is still uncertain!

¹³C(α,n)¹⁶O

The ${}^{13}C(\alpha,n){}^{16}O$ reaction is the main neutron source in low mass AGB stars at temperatures between 0.8 and 1 x 10^8 K in radiative conditions.

¹³C is produced starting from ¹²C present in the instershell region when protons squeeze in during the third dredge-up.

The experiment

d: Trojan horse nucleus p+n B=2.2 MeV |p_s|=0 MeV/c n: spectator p: participant

d(¹⁹F,α¹⁶O)n ¹⁹F(p,α) ¹⁶O Q_{3b}=5.889 MeV Q_{2b}=8.113 MeV

Measurement of the $^{19}\mathrm{F}(\mathrm{p},\alpha_0)^{16}\mathrm{O}$ reaction using the Trojan Horse Method (THM)

The ¹⁹F(p, α_0)¹⁶O reaction is the main fluorine destruction channel but no data are available around ~100 keV (energy of astrophysical interest)

THM: ²⁰Ne states are populated through p-transfer off deuteron and resonance parameters are deduced \rightarrow THM x-section shows a rich resonant pattern!

Investigation of the α_{π} channel @ LNS under analysis

The ¹⁹F(p, α)¹⁶O cross section

R-matrix parameterization of the ${}^{19}F(p,\alpha_0){}^{16}O$ astrophysical factor.

Above 0.6 MeV, the reduced partial widths were obtained through an *R*-matrix fit of direct data

Below 0.6 MeV, the resonance parameters were obtained from the modified *R*-matrix fit

The non-resonant contribution is taken from NACRE (1999).

The non-resonance contribution has been calculated for s-wave (see NACRE compilation), so no significant interference is expected.

Because of spin-parity, only the resonance at 12.957 MeV provide a significant contribution Gamow window: 27-94 keV \rightarrow this level lies right at edge of the Gamow window for extramixing in AGB stars

Robustness of the THM approach. Effect of normalization

- Larger S-factor below 0.75 MeV with respect to Isoya et al. (1958) data
- Better agreement with Breuer (1959) \rightarrow Rising S(E) with decreasing energies
- 0⁺ assignment to the 800 keV resonance
- A check of the change of the 113 keV resonance strength is mandatory

I. Lombardo et al., J. Phys. G: Nucl. Part. Phys. **40** (2013) 125102

New measurement by I. Lombardo et al. in 2013 challenges the accepted $^{19}\mathrm{F}(\mathrm{p},\alpha_0)^{16}\mathrm{O}$ astrophysical factor in the 0.6-1 MeV energy region.

The new THM analysis has lead to a S(E) factor in agreement with the one previously published

New direct measurement at low energies

Blue points: new data with statistical error only

Gray band: systematic uncertainty

I. Lombardo et al., Phys. Lett. B 748 (2015) 178

New measurement down to about 200 keV

R-matrix calculation: same levels as in the THM measurement, but the 251 keV broad 2⁺ state, probably missed because of the poor energy resolution in the 2010 experiment

Non resonant contribution taken from NACRE. As a cross check, the NRC from Yamashita & Kudo was also tested \rightarrow negligible difference

Direct data quality is still quite poor at low energies \rightarrow More work is necessary

New THM experiments performed in INFN-LNL (Legnaro) aimed at covering the low energy region with better resolution. Analysis is ongoing (only preliminary spectra)

Measurement of the ¹⁹F(p,α₀)¹⁶O channel

The contribution of the α_0 channel only has been addressed since this is currently regarded as the dominant one at temperatures relevant for AGB stars

← Spyrou et al. (2000)

An experiment has been performed @ INFN-LNS (Catania, Italy) to extract the cross section for the α_{\Box} channel and to improve the spectroscopy of the resonances discussed here.

Measurement of the ${}^{13}C(\alpha,n){}^{16}O$ reaction through the THM

The experiment was performed at the Florida State University applying the indirect THM. Our experiment was performed by measuring the sub-Coulomb $^{13}C(\alpha,n)^{16}O$ reaction through the $^{13}C(^{6}Li,n^{16}O)d$ reaction in the quasi-free kinematics regime.

Pros and cons of the experimental approach:

FLORIDA STATE UNIVERSITY

⁶Li beam (8 MeV)

on ¹³C target

Deuteron detection in PSD 1-2-3 \rightarrow No need for neutron detectors Better detection efficiency and lower chances of systematic errors (see direct measurements!)

However d is emitter at zero degrees \rightarrow the QF peak cannot be accessed in the experiment

State of the art

Fitting THM data with the HOES R-matrix

Coulomb corrected ANC² of the -3 keV resonance is: 7.7^{+1.6}-1.5 fm⁻¹ (maximum error)

```
\Gamma_{\rm n} of the -3 keV resonance is: 0.107 ^{+0.010}_{-0.007} MeV
```

Normalization region: Scaling factor and energy resolution obtained (this one in agreement with the calculated one, 46 keV)

Effect of DW: 9.5%, included into the normalization error as it modifies the 2-peak relative height

Comparison of our low-energy S-factor with some of the others present in the literature

Several extrapolations are available, we show the most recent ones or those commonly in astrophysical modeling \rightarrow Nacre (essentially the R-matrix by Hale) and Drotleff et al. (the type of calculation is not disclosed).

Electron screening? Included in Drotleff et al. calculation, not included by Heil et al.

Comparison with other indirect approaches

Clear signature of the presence of the sub threshold 6.356 MeV state in ¹⁷O responsible of the occurrence of the -3 keV resonance Also normalization is straightforward thanks to the clearly visible high energy states

Pellegriti et al.

Guo et al.

Comparison with Faestermann et al 2015 & Avila et al. 2015

High energy spectrum for the ${}^{19}F(d,\alpha){}^{17}O$ reaction at $\Theta_{lab} = 10^{\circ}$. The simultaneously fitted background (dotted) and the total fit function (dashed) are shown.

The strongest peak at 7075 keV is the only background line from the ${}^{16}O(d,\alpha_0){}^{14}N$ reaction.

```
E* = 6363.4±3 .1keV \Gamma= 136±5 keV.

\rightarrow 4.7±3 keV above threshold!

THM: \Gamma= 107±9 keV
```

How good is the agreement with THM data? → Within 5%, still fine: (increasing the ANC within the uncertainty)

Comparison with Faestermann et al 2015 & Avila et al. 2015

TABLE I. Summary of the previous and current results for the squared Coulomb-modified ANC and spectroscopic factor S_{α} for the $1/2^+$ subthreshold resonance at an excitation energy of 6.356 MeV in ¹⁷O.

$(\tilde{C}_{\alpha^{-13}C}^{^{17}O(1/2+)})^2 \text{fm}^{-1}$	S_{lpha}	Ref.
	0.01	[3]
0.89 ± 0.23		[5]
	0.36-0.40	[4]
4.5 ± 2.2	0.29 ± 0.11	[6]
$7.7 \pm 0.3_{\rm stat-1.5norm}^{+1.6}$		[<mark>9</mark>]
4.0 ± 1.1	0.37 ± 0.12	[8]
3.6 ± 0.7		This work

The ANC for the 6.356 MeV state is deduced from the fitting of the angular distribution of the sub-Coulomb alpha transfer off ⁶Li to ¹³C.

Agreement with Guo et al.

The deduced ANC is half of the value obtained with THM.

Model dependence? Error underestimate?

Pellegriti et al. find a large error coming from the energy dependence of the spectroscopic factor.

Guo et al. and Avila et al. \rightarrow single energy measurements

Summary

- Resonant reactions play a key role in astrophysics and in nuclear physics. The presence of a resonance can have dramatic consequences on nucleosynthesis

- Indirect measurements are precious tools to investigate reactions or energy ranges difficult to study otherwise

- Fields of interest: astrophysics, applied physics, nuclear structure, fundamental interactions

- However, guidance by direct data and normalization to them is necessary not to incur in systematic errors

- A synergic application of direct and indirect approaches is the best guarantee of accurate reaction rates for astrophysical application

Thanks for your attention

