Measurement of Beta-delayed Neutrons of Rapid Neutron Capture Process (r-process) Isotopes with the BRIKEN Detector *Neerajan Nepal, *Alfredo Estrade, **BRIKEN Collaborators *Science of Advanced Materials Program, Central Michigan University, Mt Pleasant, MI 48859, United States ** https://www.wiki.ed.ac.uk/display/BRIKEN/Collaboration+members+and+institutions nepal1n@cmich.edu Joint CNA/JINA-CEE Winter School on Nuclear Astrophysics Shanghai, China December 12-17, 2016 ## Rapid Neutron Capture Process (r-process) The r-process is a nucleosynthesis process and is responsible for about half of the abundance of elements heavier than iron in the solar system and for most of these abundances in very metal-poor stars The exact site of the r-process is still unconfirmed however the core collapse supernovae and neutron star mergers are the most likely candidates The probability of β-delayed neutron emission is one of the nuclear property to model the astrophysical nature of the r-process ## **β-delayed Neutron Emission** The process in which β -decay is followed by a neutron emission • Example: $${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + e^{-} + \bar{\vartheta}$$ $${}_{Z+1}^{A}Y \rightarrow {}_{Z+1}^{A-1}Y + n$$ Condition: $$Q_{\beta} > S_n$$ Where, Q_{β} is β -decay energy and S_n is the nuclear separation energy s-process - Critical to understand the rprocess abundance peak A=130 - Neutron rich nuclei - Far from the stability region R-process Nucleosynthesis in Supernovae, J.J. Cowan and F. Thielemann, Physics today, Oct 2004 #### **BRIKEN** (Beta-delayed neutron emission at RIKEN) Nuclei of interest will be produced by the fission of ²³⁸U beam using Be target at 345 MeV/nucleon Joint CNA/JINA-CEE Winter School on Nuclear Astrophysics, Shanghai, China 2016 BigRIPS ### **AIDA** (Advanced Implantaion Detector Arrary) ### **BRIKEN** (Beta-delayed neutron emission at RIKEN) **Experimental decay station** # BigRIPS ### **AIDA** (Advanced Implantaion Detector Arrary) #### **BRIKEN** (Beta-delayed neutron emission at RIKEN) - Made up of ³He counter embedded in a polyethylene matrix - 3 He + n \rightarrow p + 3 H + 765 KeV # BigRIPS ### **AIDA** (Advanced Implantaion Detector Arrary) #### **BRIKEN** (Beta-delayed neutron emission at RIKEN) Where, N_n is the delayed neutrons in a neutron detector and N_β is the registered β -decays of an specific nucleus in a β detector We already did one test on the second week of November, 2016 **BRIKEN detector** ## Goals of the Experiment - To measure experimental P_n values for the neutron-rich nuclei in the site of $\mathrm{Sn^{132}}$ - It will provide a basis for building systematics of β -delayed neutron emission probabilities beyond N=82 - It will greatly improve the reliability of r-process modeling ## Acknowledgments Advisor: Dr. Alfredo Estrade, Central Michigan University, MI 48858, USA **Special Thanks to:**A. Tarifeno-Saldiva^{1,2}, J.L. Tain², C. Domingo-Pardo², F. Calvino¹, G. Cortes¹, V. H. Phong³, A. Riego¹, J. Agramunt², A. Algora², N. Brewer,^{4,6} R. Caballero-Folch⁷, P. Coleman-Smith¹¹, T. Davinson⁸, I. Dillmann⁷, C. Griffin⁸, R. Grzywacz⁵, L. Harkness-Brennan¹⁰, G. G. Kiss^{3,15}, M. Kogimtzis¹¹, I. Lazarus¹¹, G. Lorusso^{18,9}, K. Matsui³, K. Miernik¹⁷, F. Montes^{13,14}, A. Morales², S. Nishimura³, R. D. Page¹⁰, Z. Podolyak⁹, V. F. Pucknell¹¹, B. C. Rasco^{4,6}, P. Regan⁹, B. Rubio², K. P. Rykaczewski⁴, H. Sakurai³, J. Simpson¹¹, E. Sokol¹⁹, R. Surman¹⁶, A. Svirkhin¹⁹, S. L. Thomas¹², A. Tolosa² and P. Woods⁸ ¹Universitat Politecnica de Catalunya (UPC), Barcelona, Spain ² Instituto de Fisica Corpuscular (CSIC-University of Valencia), Valencia, Spain ³RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan ⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA ⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA ⁶JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁷TRIUMF, Vancouver, British Columbia V6T2A3, Canada ⁸University of Edinburgh, EH9 3JZ Edinburgh, United Kingdom ⁹Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ¹⁰Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK ¹¹STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK ¹²STFC Rutherford Appleton Laboratory, Chilton OX11 OQX, UK ¹³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ¹⁴Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA ¹⁵Institute for Nuclear Research (MTA Atomki), H-4001 Debrecen, POB.51., Hungary ¹⁶Department of Physics, University of Notre Dame, Notre Dame, IN 46556 USA ¹⁷Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland ¹⁸National Physical Laboratory, NPL, Teddington, Middlesex TW11 OLW, United Kingdom ²⁹Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region, Russia